• Abstract

    In tropical environments, stingless bees are an important group of pollinators, helping to maintain plant biodiversity and, consequently, to preserve ecosystems. The foraging activity of these insects is influenced by biotic and abiotic factors. Although air temperature limits activities outside the hive, the natural thermal environment is complex; meteorological variables interact with each other, requiring elaborate thermoregulatory responses from bees. The complexity of the thermal environment has been the subject of recent research on insect thermoregulation. The effects of wind and especially solar radiation should be considered when studying the behavior of stingless bees. In this context, this mini-review aimed to address the main components of the thermal environment that influence the foraging activity of stingless bees.

  • References

    1. Abecia JA, Máñez J, Macias A, Laviña A, Palacios C (2017) Climate zone influences the effect of temperature on the day of artificial insemination on fertility in two Iberian sheep breeds. Journal of Animal Behaviour and Biometeorology 5:124-131.
    2. Barbosa MF. Campos LADO, Paixão JFD, Alves RMDO (2016) Padrão de forrageamento e colheita de recursos de abelhas sem ferrão subterrâneas: Geotrigona subterranean (Friese, 1901) (Hymenoptera: Apidae: Meliponini). Papéis Avulsos de Zoologia 56:151-157.
    3. Basari N, Ramli SN, Khairi NSM (2018) Food reward and distance influence the foraging pattern of stingless bee, Heterotrigona itama. Insects 9:E138.
    4. Cortopassi-Laurino M, Imperatriz-Fonseca, VL, Roubik DW, Dollin A, Heard T, Aguilar I, Venturieri, GC, Eardley C, Nogueira-Neto P (2006) Global meliponiculture: challenges and opportunities. Apidologie 37:275-292.
    5. Couvillon MJ, Pearce FCR, Accleton C, Fensome KA, Quah SKL, Taylor EL (2015) Honey bee foraging distance depends on month and forage type. Apidologie 46:61–70.
    6. Da Silva RG, Guilhermino MM, Morais DAEF (2010) Thermal radiation absorbed by dairy cows in pasture. International Journal of Biometeorology 54:5–11.
    7. Ferreira NS, Hrncir M (2012) Thermal tolerance of workers of the stingless bee Melipona subnitida (Apidae, Meliponini). In: X Encontro Sobre Abelhas, 2012, Ribeirão Preto, Brasil. Anais do X Encontro Sobre Abelhas, p. 176.
    8. Giannini TC, Acosta AL, Garófalo AL, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling 244:127-131.
    9. Giannini TC, Boff S, Cordeiro GD, Cartolano Jr. EA, Veiga AK, Imperatriz-Fonseca VL, Saraiva AM (2015) Crop pollinators in Brazil: a review of reported interactions. Apidologie 46:209-223.
    10. Hrncir M, Teixeira-Souza VHS, Ferreira NS (2015) Foraging at high temperatures. How bees in the Brazilian Tropical Dry Forest solve this thermal challenge. In: Annual Conference of the Animal Behavior Society, 52nd, 2015, Anchorage, Alaska. Proceedings of the 52nd Annual Conference of the Animal Behavior Society.
    11. Jaapar MF, Jajuli R, Mispan MR, Ghani IA (2018) Foraging behavior of stingless bee Heterotrigona itama (Cockerell, 1918) (Hymenoptera: Apidae: Meliponini). AIP Conference Proceedings 1940:020037.
    12. Kovac H, Stabentheiner A, Schmaranzer S (2010) Thermoregulation of water foraging honeybees – balancing of endothermic activity with radiative heat gain and functional requirements. Journal of Insect Physiology 56:1834-1845.
    13. Layek U, Karmakar P (2018) Nesting characteristics, floral resources, and foraging activity of Trigona iridipennis Smith in Bankura district of West Bengal, India. Insectes Sociaux 65:117–132.
    14. Macias-Macias JO, Tapia-Gonzalez JM, Contreras-Escareno F (2017) Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini) in temperate climate of Jalisco, México. Brazilian Journal of Biology 77:383-387.
    15. Maia-Silva C, Imperatriz-Fonseca VL, Hrncir M (2014) Environmental windows for foraging activity in stingless bees, Melipona subnitida Ducke and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Sociobiology 61:378-385.
    16. Maia-Silva C, Hrncir M, Silva CI, Imperatriz-Fonseca VL (2015) Survival strategies of stingless bees (Melipona subnitida) in an unpredictable environment, the Brazilian tropical dry. Apidologie 46:631–643.
    17. Nieh JC, Sánchez D Effect of food quality, distance and height on thoracic temperature in the stingless bee Melipona panamica. Journal of Experimental Biology 208:3933-3943.
    18. Oliveira FL, Dias VHP, Costa EM, Filgueira MA, SOBRINHO JE (2012) Influência das variações climáticas na atividade de vôo das abelhas jandaíras Melipona subnitida Ducke (Meliponinae). Revista Ciência Agronômica 43:598-603.
    19. Oliveira SEO, Costa CCM, Souza Jr JBF, Queiroz JPAF, Maia ASC, Costa LLM (2014) Short-wave solar radiation level willingly tolerated by lactating Holstein cows in an equatorial semi-arid environment. Tropical Animal Health and Production 46:1413–1417.
    20. Potts G, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25:345-353.
    21. Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R (2018) Physiological adaptability of livestock to heat stress: an updated review. Journal of Animal Behaviour Biometeorology 6:62–72.
    22. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge: Tropical Biology Series: Cambridge.
    23. Slaa EJ, Sánchez Chaves LA, Malagodi-Braga KS, Hofstede FE (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293-315.
    24. Souza-Junior JBF (2019) Termorregulação e atividade de forrageamento de Melipona subnitida no bioma Caatinga. Thesis, Universidade Federal Rural do Semi-Árido.
    25. Stabentheiner A, Kovac H, Hetz S, Käfer H, Stabentheiner G (2012) Assessing honeybee and wasp thermoregulation and energetics – New insights by combination of flow-through respirometry with infrared thermography. Thermochimica Acta 534:77-86.
    26. Stabentheiner A, Kovac H (2014) Energetic optimisation of foraging honeybees: flexible change of strategies in response to environmental challenges. PLoS ONE :9:e105432.
    27. Willmer PG, Stone GN (2004) Behavioral, ecological, and physiological determinants of the activity patterns of bees. Advances in the Study of Behavior 34:347-466.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2019 Malque Publishing

How to cite

Souza-Junior, J. B. F., de Queiroz, J. P. A. F., & Linhares, C. M. de S. (2019). Influence of the thermal environment on the stingless bee foraging activity: a mini-review. Journal of Animal Behaviour and Biometeorology, 7(4), 176–178. https://doi.org/10.31893/2318-1265jabb.v7n4p176-178
  • Article viewed - 40
  • PDF downloaded - 17