• Abstract

    Silvopastoral systems are important tools for bovine production under tropical conditions because of the optimization of tree and forage resources. This combination presents productive advantages, such as increasing the efficiency of production systems and the environmental effect on the system, on the basis of thermoregulation and high biomass loads that balance the environmental impact of the system. Animal reproduction depends on multiple factors that strongly affect nutrition and the environment. Although reproductive efficiency is represented by fertility, there are different parameters that represent it, such as the intervals between births or open days, which influence the generation interval and plans for genetic improvement. It is important to understand the effects of silvopastoral systems that directly or indirectly impact reproductive efficiency in cattle to elucidate and construct concepts that allow strengthening or modifying systems to balance or increase reproductive efficiency in cattle. The objective of this review is to focus on the effects of silvopastoral systems and heat stress on bovine reproduction.

  • References

    1. Arya, R. (2006). A silvipastoral study combining Cenchrus ciliaris and three species of tree in arid India. Journal of Arid Environments, 65(1), 179–191. https://doi.org/10.1016/j.jaridenv.2005.07.001
    2. Báder, M, Németh, R, Vörös, Á, Tóth, Z, & Novotni, A. (2023). The effect of agroforestry farming on wood quality and timber industry and its supportation by Horizon 2020. Agroforestry Systems, 97(4), 587–603. https://doi.org/10.1007/s10457-023-00812-8
    3. Boinot, S, Barkaoui, K, Mézière, D, Lauri, P. E, Sarthou, J. P, & Alignier, A. (2022). Research on agroforestry systems and biodiversity conservation: what can we conclude so far and what should we improve? BMC Ecology and Evolution, 22(1), 1–6. https://doi.org/10.1186/s12862-022-01977-z
    4. Bozkaya, F, Atli, M. O, Guzeloglu, A, Kayis, S. A, Yildirim, M. E, Kurar, E, Yilmaz, R, & Aydilek, N. (2017). Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue. Andrologia, 49(6), 1–7. https://doi.org/10.1111/and.12668
    5. Bublitz, L, Chaves, A, Mauri, A, Cardoso, V, de Souza, K, Reis, I, & Ítavo, L. (2024). Panicum maximum cultivars for use in integrated agricultural production systems in Cerrado biome soils. Plant myths and traditions in India, 70(3), 121–129. https://doi.org/10.1111/grs.12423
    6. Chandrasena, W, Craven, R, Tracey, D, & Dillon, A. (2011). A study of the relations between students’ self-concepts, motivation, aspirations and achievement of high school science and chemistr. Proceedings of the Inaugural Higher Degree Research Conference at the University of New South Wales, 5, 14–25.
    7. Cleugh, H. A. (1998). Effects of windbreaks on airflow, microclimates and crop yields. Agroforestry Systems, 41(1), 55–84. https://doi.org/10.1023/A:1006019805109
    8. Costantino, A, Fabrizio, E, & Calvet, S. (2021). The role of climate control in monogastric animal farming: The effects on animal welfare, air emissions, productivity, health, and energy use. Applied Sciences (Switzerland), 11(20). https://doi.org/10.3390/app11209549
    9. Cushman, R. A. (2013). Physiology and endocrinology symposium: The current status of heat shock in early embryonic survival and reproductive efficiency. Journal of Animal Science, 91(3), 1141–1142. https://doi.org/10.2527/jas.2013-6231
    10. de Abreu, M, Ibrahim, M, Harvey, C, & Jiménez, F. (2000). Caracterizacion del componente arboreo en los sistemas ganaderos de La Fortuna de San Carlos, Costa RIca. Agroforestería en las Américas, 7(26), 53–56.
    11. de Oliveira, C. C, Alves, F. V, de Almeida, R. G, Gamarra, É. L, Villela, S. D. J, & Martins, P. G. M. de A. (2018). Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agroforestry Systems, 92(6), 1659–1672. https://doi.org/10.1007/s10457-017-0114-5
    12. de Sousa, K. T, Deniz, M, Vale, M. M. do, Dittrich, J. R, & Hötzel, M. J. (2021). Influence of microclimate on dairy cows’ behavior in three pasture systems during the winter in south Brazil. Journal of Thermal Biology, 97(December 2020). https://doi.org/10.1016/j.jtherbio.2021.102873
    13. Dias, H. R. S, dos Reis Camargo, A. J, Oliveira, G. F, Mourão, A. M, Saraiva, N. Z, de Almeida Camargo, L. S, Müller, M. D, Martins, C. E, Nogueira, L. A. G, Brandão, F. Z, & Oliveira, C. S. (2023). Reproductive development of dairy heifers in an integrated livestock-forest system during the summer. Animal Reproduction, 20(3), 1–11. https://doi.org/10.1590/1984-3143-AR2023-0100
    14. Dikmen, S, & Hansen, P. J. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science, 92(1), 109–116. https://doi.org/10.3168/jds.2008-1370
    15. Dlamini, Z, Janzsó, M, Székely, Á, Kolozsvári, I, Norbert, T, Bakti, B, Zalaí, M, & Kun, Á. (2024). Assessing Yield, Biomass Production, and Forage Quality of Red Clover (Trifolium pratense L.) in Agroforestry System: One-Year Study in Szarvas, Hungary. Agronomy, 14(9), 1921. https://doi.org/10.3390/agronomy14091921
    16. Endris, M, & Feki, E. (2021). Review on Effect of Stress on Animal Productivity and Response of Animal to Stressors. Journal of Animal and Veterinary Advances, 20(1), 1–14.
    17. Fedrigo, J. K, Santa Cruz, R, Benítez, V, Courdin, V, Ferreira, G, Posse, J. P, & Viñoles, C. (2019). Dynamics of forage mass, air temperature and animal performance in a silvopastoral system of Uruguay. Agroforestry Systems, 93(6), 2197–2204. https://doi.org/10.1007/s10457-018-0335-2
    18. Gantner, V, Mijić, P, Jovanovac, S, Raguž, N, Bobić, T, & Kuterovac, K. (2012). Influence of temperature-humidity index (THI) on daily production of dairy cows in Mediterranean region in Croatia. EAAP Scientific Series, 131(1), 71–80. https://doi.org/10.3920/978-90-8686-741-7_8
    19. Garcia-Oliveros, L. N, Arruda, R. P. de, Batissaco, L, Gonzaga, V. H. G, Nogueira, V. J. M, Florez-Rodriguez, S. A, Almeida, F. dos S, Alves, M. B. R, Pinto, S. C. C, Nichi, M, Losano, J. D. de A, Kawai, G. K. V, & Celeghini, E. C. C. (2022). Chronological characterization of sperm morpho-functional damage and recovery after testicular heat stress in Nellore bulls. Journal of Thermal Biology, 106(March). https://doi.org/10.1016/j.jtherbio.2022.103237
    20. Gloria, A, Candeloro, L, Wegher, L, Robbe, D, Carluccio, A, & Contri, A. (2021). Environmental temperature and relative humidity differently affect the sperm characteristics in Brown Swiss and Belgian Blue bulls. International Journal of Biometeorology, 65(12), 2189–2199. https://doi.org/10.1007/s00484-021-02184-z
    21. Guenni, O, Romero, E, Guédez, Y, Bravo de Guenni, L, & Pittermann, J. (2018). Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass and Forage Science, 73(4), 967–978. https://doi.org/10.1111/gfs.12368
    22. Hedia, M, El-Belely, M, Ismail, S, & Abo El-Maaty, A. (2020). Seasonal changes in testicular ultrasonogram pixel-intensity and their association with semen characteristics in rams. Asian Pacific Journal of Reproduction, 9(1), 49–54. https://doi.org/10.4103/2305-0500.275635
    23. Henry, B. K, Eckard, R. J, & Beauchemin, K. A. (2018). Review: Adaptation of ruminant livestock production systems to climate changes. Animal, 12(s2), S445–S456. https://doi.org/10.1017/S1751731118001301
    24. Hidayat, I. (2010). The ecological role of trees and their interactions in forming the microclimate amenity of environment. Jurnal Bumi Lestari, 10(2), 182–190. http://ojs.unud.ac.id/index.php/blje/article/view/120/103
    25. Iglesias, J, Simón, L, & Martín, G. (2017). Sistemas silvopastoriles en el contexto cubano. Agroecología, 12(1), 75–82.
    26. Jordan, E. R. (2003). Effects of heat stress on reproduction. Journal of Dairy Science, 86(SUPPL. 1), E104–E114. https://doi.org/10.3168/jds.S0022-0302(03)74043-0
    27. Karvatte, N, Klosowski, E. S, de Almeida, R. G, Mesquita, E. E, de Oliveira, C. C, & Alves, F. V. (2016). Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. International Journal of Biometeorology, 60(12), 1933–1941. https://doi.org/10.1007/s00484-016-1180-5
    28. Kim, S. H, Ramos, S. C, Valencia, R. A, Cho, Y. Il, & Lee, S. S. (2022). Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Frontiers in Microbiology, 13(February), 1–23. https://doi.org/10.3389/fmicb.2022.804562
    29. Knowles, R. L. (1991). New Zealand experience with silvopastoral systems: A review. Forest Ecology and Management, 45(1–4), 251–267. https://doi.org/10.1016/0378-1127(91)90221-G
    30. Koivisto, M. B, Costa, M. T. A, Perri, S. H. V, & Vicente, W. R. R. (2009). The effect of season on semen characteristics and freezability in bos indicus and bos taurus bulls in the Southeastern Region of Brazil. Reproduction in Domestic Animals, 44(4), 587–592. https://doi.org/10.1111/j.1439-0531.2008.01023.x
    31. Leite da Silva, W. A, Poehland, R, Carvalho de Oliveira, C, Ribeiro Ferreira, M. G. C, Garcia de Almeida, R, Cáceres, M. B. S, Macedo, G. G, da Costa e Silva, E. V, Alves, F. V, Nogueira, E, & de Andrade Melo-Sterza, F. (2020). Shading effect on physiological parameters and in vitro embryo production of tropical adapted Nellore heifers in integrated crop-livestock-forest systems. Tropical Animal Health and Production, 52(5), 2273–2281. https://doi.org/10.1007/s11250-020-02244-3
    32. Lemes, A. P, Garcia, A. R, Pezzopane, J. R. M, Brandão, F. Z, Watanabe, Y. F, Cooke, R. F, Sponchiado, M, de Paz, C. C. P, Camplesi, A. C, Binelli, M, & Gimenes, L. U. (2021). Silvopastoral system is an alternative to improve animal welfare and productive performance in meat production systems. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-93609-7
    33. Lopes, L. B, Eckstein, C, Pina, D. S, & Carnevalli, R. A. (2016). The influence of trees on the thermal environment and behaviour of grazing heifers in Brazilian Midwest. Tropical Animal Health and Production, 48(4), 755–761. https://doi.org/10.1007/s11250-016-1021-x
    34. Magalhães, C. A. S, Zolin, C. A, Lulu, J, Lopes, L. B, Furtini, I. V, Vendrusculo, L. G, Zaiatz, A. P. S. R, Pedreira, B. C, & Pezzopane, J. R. M. (2020). Improvement of thermal comfort indices in agroforestry systems in the southern Brazilian Amazon. Journal of Thermal Biology, 91(June). https://doi.org/10.1016/j.jtherbio.2020.102636
    35. Martins, C. F, Fonseca-Neto, A. M, Bessler, H. C, Dode, M. A. N, Leme, L. O, Franco, M. M, McManus, C. M, Malaquias, J. V, & Ferreira, I. C. (2010). Natural shade from integrated crop–livestock–forestry mitigates environmental heat and increases the quantity and quality of oocytes and embryos produced in vitro by Gyr dairy cows. Livestock Science, 10(2), 182–190. https://doi.org/10.1016/j.livsci.2020.104341
    36. Mellor, D. J, Beausoleil, N. J, Littlewood, K. E, McLean, A. N, McGreevy, P. D, Jones, B, & Wilkins, C. (2020). The 2020 five domains model: Including human–animal interactions in assessments of animal welfare. Animals, 10(10), 1–24. https://doi.org/10.3390/ani10101870
    37. Mete, F, Kilic, E, Somay, A, & Yilmaz, B. (2012). Effects of heat stress on endocrine functions & behaviour in the pre-pubertal rat. Indian Journal of Medical Research, 135(2), 233–239.
    38. Navas, A. (2007). Sistemas silvopastoriles para el diseño de fincas ganaderas sostenibles. ACOVEZ, 37(106), 16–20.
    39. Navas, Alexander. (2010). Importancia de los sistemas silvopastoriles en la reducción del estrés calórico en sistemas de producción ganadera tropical. Revista de Medicina Veterinaria, 19, 113–122. https://doi.org/10.19052/mv.782
    40. Orefice, J, Smith, R. G, Carroll, J, Asbjornsen, H, & Howard, T. (2019). Forage productivity and profitability in newly-established open pasture, silvopasture, and thinned forest production systems. Agroforestry Systems, 93(1), 51–65. https://doi.org/10.1007/s10457-016-0052-7
    41. Page, M. J, Moher, D, Bossuyt, P. M, Boutron, I, Hoffmann, T. C, Mulrow, C. D, Shamseer, L, Tetzlaff, J. M, Akl, E. A, Brennan, S. E, Chou, R, Glanville, J, Grimshaw, J. M, Hróbjartsson, A, Lalu, M. M, Li, T, Loder, E. W, Mayo-Wilson, E, Mcdonald, S, … Mckenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/BMJ.N160
    42. Pandey, D. (2002). Carbon sequestration in agroforestry systems. Climate Policy, 2, 207–227. https://doi.org/10.1016/S1469-3062(02)00025-6
    43. Paula-Lopes, F. F, Lima, R. S, Satrapa, R. A, & Barros, C. M. (2013). Physiology and endocrinology symposium: Influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature. Journal of Animal Science, 91(3), 1143–1153. https://doi.org/10.2527/jas.2012-5802
    44. Pezzopane, J. R. M, Bosi, C, Nicodemo, M. L. F, Santos, P. M, da Cruz, P. G, & Parmejiani, R. S. (2015). Microclimate and soil moisture in a silvopastoral system in southeastern Brazil. Agrometeorology Bragantia, 74(1), 110–119. https://doi.org/10.1590/1678-4499.0334
    45. Rahman, M. B, Schellander, K, Luceño, N. L, & Van Soom, A. (2018). Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology, 113, 102–112. https://doi.org/10.1016/j.theriogenology.2018.02.012
    46. Reuscher, K. J, Cook, N. B, da Silva, T. E, Mondaca, M. R, Lutcherhand, K. M, & Van Os, J. M. C. (2023). Effect of different air speeds at cow resting height in freestalls on heat stress responses and resting behavior in lactating cows in Wisconsin. Journal of Dairy Science, 106(12), 9552–9567. https://doi.org/10.3168/jds.2023-23364
    47. Rolo, V. (2022). Agroforestry for Sustainable Food Production. Sustainability, 14(16), 2–4. https://doi.org/10.3390/su141610193
    48. Ronchi, B, Stradaioli, G, Supplizi, A. V, Bernabucci, U, Lacetera, N, Accorsi, P. A, Nardone, A, & Seren, E. (2001). Ronchi-Heat Stress and Feed Restriction and Reproduction. Livestock Production Science, 68, 231–241. https://doi.org/10.1016/S0301-6226(00)00232-3
    49. Roth, Z, Meiden, R, Braw-Tal, R, & Wolfenson, D. (2000). Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. Journal of Reproduction and Fertility, 120(1), 83–90. https://doi.org/10.1530/jrf.0.1200083
    50. Sales-Baptista, E, & Ferraz-de-Oliveira, M. I. (2021). Grazing in silvopastoral systems: multiple solutions for diversified benefits. Agroforestry Systems, 95(1), 1–6. https://doi.org/10.1007/s10457-020-00581-8
    51. Santos, M. V, Ferreira, E. A, Valadão, D, Oliveira, F. L. R. de, Machado, V. D, Silveira, R. R, & Souza, M. de F. (2017). Brachiaria physiological parameters in agroforestry systems. Ciência Rural, 47(5), 2–7. https://doi.org/10.1590/0103-8478cr20160150
    52. Sarto, M. V. M, Borges, W. L. B, Bassegio, D, Nunes, M. R, Rice, C. W, & Rosolem, C. A. (2022). Deep Soil Water Content and Forage Production in a Tropical Agroforestry System. Agriculture, 12(3), 1–13. https://doi.org/10.3390/agriculture12030359
    53. Seidou, A, Offoumon, O. T. L. F, Sanni Worogo, S. H, Houaga, I, Koara Yarou, A, Azalou, M, Adambi Boukari, F. Z, Idrissou, Y, Houinato, M, & Alkoiret Traoré, I. (2023). The effect of the silvopastoral system on milk production and reproductive performance of dairy cows and its contribution to adaptation to a changing climate in the drylands of Benin (West-Africa). Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1236581
    54. Sharma, P, Kaur, A, Batish, D. R, Kaur, S, & Chauhan, B. S. (2022). Critical Insights Into the Ecological and Invasive Attributes of Leucaena leucocephala, a Tropical Agroforestry Species. Frontiers in Agronomy, 4(May), 1–15. https://doi.org/10.3389/fagro.2022.890992
    55. Sharmin, M, Tjoelker, M. G, Pfautsch, S, Esperón-Rodriguez, M, Rymer, P. D, & Power, S. A. (2023). Tree Traits and Microclimatic Conditions Determine Cooling Benefits of Urban Trees. Atmosphere, 14(3). https://doi.org/10.3390/atmos14030606
    56. Silva, W. C. da, Silva, J. A. R. da, Camargo-Júnior, R. N. C, Silva, É. B. R. da, Santos, M. R. P. dos, Viana, R. B, Silva, A. G. M. e, Silva, C. M. G. da, & Lourenço-Júnior, J. de B. (2023). Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Frontiers in Veterinary Science, 10(2). https://doi.org/10.3389/fvets.2023.1083469
    57. Silva, G. M, Laporta, J, Podversich, F, Schulmeister, T. M, Santos, E. R. S, Dubeux, J. C. B, Gonella-Diaza, A, & DiLorenzo, N. (2023). Artificial shade as a heat abatement strategy to grazing beef cow-calf pairs in a subtropical climate. PLoS ONE, 18(7 July), 1–16. https://doi.org/10.1371/journal.pone.0288738
    58. Souza, V. C, Moraes, L. E, Baumgard, L. H, Santos, J. E. P, Mueller, N. D, Rhoads, R. P, & Kebreab, E. (2023). Modeling the effects of heat stress in animal performance and enteric methane emissions in lactating dairy cows. Journal of Dairy Science, 106(7), 4725–4737. https://doi.org/10.3168/jds.2022-22658
    59. Staub, C, & Johnson, L. (2018). Review: Spermatogenesis in the bull. Animal, 12(s1), s27–s35. https://doi.org/10.1017/S1751731118000435
    60. Torres-Júnior, J. R. d. S, Pires, M. de F. A, de Sá, W. F, Ferreira, A. de M, Viana, J. H. M, Camargo, L. S. A, Ramos, A. A, Folhadella, I. M, Polisseni, J, de Freitas, C, Clemente, C. A. A, de Sá Filho, M. F, Paula-Lopes, F. F, & Baruselli, P. S. (2008). Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology, 69(2), 155–166. https://doi.org/10.1016/j.theriogenology.2007.06.023
    61. Torres, B, Herrera-Feijoo, R, Torres, Y, & García, A. (2023). Global Evolution of Research on Silvopastoral Systems through Bibliometric Analysis: Insights from Ecuador. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020479
    62. Torres, M, Soriano, R, Peralta, J, Alejos, J, Sánchez, P, Arias, L, Campos, R, & Almaraz, I. (2020). Challenges of livestock: climate change, animal welfare and agroforestry. Large Animal Review, 26(1), 39–45.
    63. Udawatta, R. P, Rankoth, L. M, & Jose, S. (2019). Agroforestry and biodiversity. Sustainability (Switzerland), 11(10). https://doi.org/10.3390/su11102879
    64. van Ramshorst, J. G. V, Siebicke, L, Baumeister, M, Moyano, F. E, Knohl, A, & Markwitz, C. (2022). Reducing Wind Erosion through Agroforestry: A Case Study Using Large Eddy Simulations. Sustainability (Switzerland), 14(20), 1–24. https://doi.org/10.3390/su142013372
    65. Vandermeulen, S, Ramírez-Restrepo, C. A, Beckers, Y, Claessens, H, & Bindelle, J. (2018). Agroforestry for ruminants: A review of trees and shrubs as fodder in silvopastoral temperate and tropical production systems. Animal Production Science, 58(5), 767–777. https://doi.org/10.1071/AN16434
    66. Vieira, F. M. C, Pilatti, J. A, Czekoski, Z. M. W, Fonsêca, V. F. C, Herbut, P, Angrecka, S, de Souza Vismara, E, de Paulo Macedo, V, Dos Santos, M. C. R, & Paśmionka, I. (2021). Effect of the silvopastoral system on the thermal comfort of lambs in a subtropical climate: A preliminary study. Agriculture (Switzerland), 11(8), 1–10. https://doi.org/10.3390/agriculture11080790
    67. Wilson, A. M, Wright, T. C, Cant, J. P, & Osborne, V. R. (2023). Behavioral and physiological responses to an inspired-air supplemental cooling system for dairy cows in free-stall housing. Animal, 17(8), 100887. https://doi.org/10.1016/j.animal.2023.100887
    68. Wilson, S. J, Marion, R. S, Spain, J. N, Spiers, D. E, Keisler, D. H, & Lucy, M. C. (1998). Effects of Controlled Heat Stress on Ovarian Function of Dairy Cattle. 1. Lactating Cows. Journal of Dairy Science, 81(8), 2124–2131. https://doi.org/10.3168/jds.S0022-0302(98)75788-1
    69. Wolfenson, D, Roth, Z, & Meidan, R. (2000). Impaired reproduction in heat-stressed cattle: Basic and applied aspects. Animal Reproduction Science, 60–61, 535–547. https://doi.org/10.1016/S0378-4320(00)00102-0
    70. Zeppetello, L. R. V, Cook-Patton, S. C, Parsons, L. A, Wolff, N. H, Kroeger, T, Battisti, D. S, Bettles, J, Spector, J. T, Balakumar, A, & Masuda, Y. J. (2022). Consistent cooling benefits of silvopasture in the tropics. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-28388-4

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Journal of Animal Behaviour and Biometeorology

How to cite

Barajas Pardo, D. P., Avila Valbuena, S., Pacheco Perez, C. ernesto, & Lopera Vasquez, R. (2025). Influence of silvopastoral systems and heat stress on bovine reproduction. Journal of Animal Behaviour and Biometeorology, (| Accepted Articles). Retrieved from https://malque.pub/ojs/index.php/jabb/article/view/8538
  • Article viewed - 101