• Abstract

    The one-humped camel (Camelus dromedarius), commonly referred to as the Arabian camel, is primarily found in North Africa, tropical Africa, the Middle East, and the Indian subcontinent. The dromedary camel is of immense economic, social, and ecological value to nomadic and rural communities, offering high-quality animal protein through milk and meat and serving as a vital means of transportation. In some places, camels are also expected to enhance local tourism, providing much-needed financial support to the local economy. Owing to their unique qualities, camels are essential for maintaining desert ecosystems, setting them apart from other domestic livestock. The adaptations of dromedaries are tailored for survival in harsh environments with limited water and food, extreme heat, and rugged terrain. These adaptations include specialized skin, eyes, nostrils, lips, large bodies, long legs, and wide foot pads. Additionally, the biological, physiological, and biochemical traits of camels and their behavioral adaptations contribute to their resilience in desert conditions. These adaptations include water conservation, unique blood properties, thermoregulation, and efficient digestion and metabolism. Furthermore, the feeding, drinking, thermal, and reproductive behaviors of camels significantly support survival in deserts. The anatomical and physiological characteristics of the dromedary make it the ideal animal to meet the needs of users globally, especially amid climate change, where global warming, water scarcity, and scarce pastures are common. Therefore, camels are crucial for stabilizing the food supply in arid desert regions, nourishing their keepers, and serving as vital contributors to food security and sovereignty within desert ecosystems.

  • References

    1. Abdalla, M. A. (2020). Anatomical features in the kidney involved in water conservation through urine concentration in dromedaries (Camelus dromedarius). Heliyon, 6(1), e03139. https://doi.org/10.1016/j.heliyon.2019.e03139
    2. Abdel-Rahman, M., & Mosaad, G. (2005). Effect of feed and water deprivation on nutrients digestibility, behavioral and metabolic patterns of one-humped camel (Camelus dromedarius). Assiut Veterinary Medical Journal, 51(105), 1–17. https://doi.org/10.21608/Avmj.2005.177805
    3. Adakole, S. A., Ayo, J. O., & Adah, D. A. (2023). Unique physiological and behavioural adaptive features of the one-humped camel (Camelus dromedarius) to arid environments. Journal of Applied Veterinary Science, 8(1), 57–64. https://doi.org/10.21608/javs.2022.168375.1184
    4. Ahmad, S., et al. (2010). Economic importance of camel: Unique alternative under crisis. Pakistan Veterinary Journal, 30(4), 191–197.
    5. Ahmed, R. S., & Abdalla, A. B. (2018). Morphological study on the extrahepatic biliary duct system of the camel (Camelus dromedarius). Global Journal of Animal Science Research, 4(1), 12–19.
    6. Akinmoladun, O. F., Muchenje, V., Fon, F. N., & Mpendulo, C. T. (2019). Small ruminants: Farmers' hope in a world threatened by water scarcity. Animals (Basel), 9(7), 456. https://doi.org/10.3390/ani9070456
    7. Al Razaiki, K., Al Khaldi, K., Al Harthy, N., Al Wahaibi, A., & Qutieshat, A. (2024). Evaluating the role of inorganic elements of Camelus dromedarius saliva in protecting enamel against tooth surface loss. Journal of Veterinary Dentistry, 41(4), 270–280. https://doi.org/10.1177/08987564231177575
    8. Ali, A., Baby, B., & Vijayan, R. (2019). From desert to medicine: A review of camel genomics and therapeutic products. Frontiers in Genetics, 10, 17. https://doi.org/10.3389/fgene.2019.00017
    9. Ali, A., Soman, S. S., & Vijayan, R. (2022). Dynamics of camel and human hemoglobin revealed by molecular simulations. Scientific Reports, 12, 122. https://doi.org/10.1038/s41598-021-04112-y
    10. Ali, M. A., Abu Damir, H., Adem, M. A., Ali, O. M., Amir, N., Shah, A. A. M., Al Muhairi, S. S., Al Abdouli, K. O. S., Khawaja, J. R., Fagieri, T. A., Adam, A., Elkhouly, A. A., Al Marri, Z. J., Jamali, M., Murphy, D., & Adem, A. (2023). Effects of long-term dehydration on stress markers, blood parameters, and tissue morphology in the dromedary camel (Camelus dromedarius). Frontiers in Veterinary Science, 10, 1236425. https://doi.org/10.3389/fvets.2023.1236425
    11. Allouch, G. M. (2016). Anatomical study of the water cells area in the dromedary camel's rumen (Camelus dromedarius). Medical and Biological Sciences, 5.
    12. Almansour, M., Jarrar, B., Faye, B., et al. (2024). The salivary glands of the camel: An element of adaptation to desert conditions and mitigation of climate change impacts. Jordan Journal of Biological Sciences, 17(1), 99–108. https://doi.org/10.54319/jjbs/170109
    13. Alsafy, M. A., El-Gendy, S. A. A., Kamal, B. M., Rutland, C. S., Abd-Elhafeez, H. H., Soliman, S., ELKhamary, A. N., & Nomir, A. G. (2023). Heart ventricles of the dromedary camel (Camelus dromedarius): New insights from sectional anatomy, 3D computed tomography, and morphometry. BMC Zoology, 8(1), 12. https://doi.org/10.1186/s40850-023-00173-w
    14. Alvira-Iraizoz, F., Gillard, B. T., Lin, P., Paterson, A., Pauža, A. G., Ali, M. A., Alabsi, A. H., Burger, P. A., Hamadi, N., Adem, A., Murphy, D., & Greenwood, M. P. (2021). Multiomic analysis of the Arabian camel (Camelus dromedarius) kidney reveals a role for cholesterol in water conservation. Communications Biology, 4(1), 779. https://doi.org/10.1038/s42003-021-02327-3
    15. Amsidder, L., Alary, V., & Sraïri, M. T. (2021). An empirical approach of past and present mobility management in the desert societies of camel breeders in South Eastern Morocco. Journal of Arid Environments, 189, 104501. https://doi.org/10.1016/j.jaridenv.2021.104501
    16. Asadi, F., Shahriari, A., Asadian, P., Pourkabir, M., Sabzikar, A., & Ojaghee, R. (2009). Serum lipid, glucose, free fatty acids, and liver triglyceride in sub-adult and adult camels (Camelus dromedarius). Revue Médicine Vétérinaire, 160, 552–556.
    17. Auer, R. E., Gleiss, A., & Windberger, U. (2015). Towards a basic understanding of the properties of camel blood in response to exercise. Emirates Journal of Food and Agriculture, 27, 302–311.
    18. Balah, A., Bareedy, M. H., Abuel-Atta, A. A., & Ghonimi, W. (2014). Os cordis of mature Dromedary camel heart (Camelus dromedarius) with special emphasis on cartilago cordis. Journal of Advanced Veterinary and Animal Research, 1(3), 130–135.
    19. Bekele, T., Olsson, K., Olsson, U., & Dahlborn, K. (2013). Physiological and behavioral responses to different watering intervals in lactating camels (Camelus dromedarius). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(6), R639–R646. https://doi.org/10.1152/ajpregu.00015.2013
    20. Bornstein, S. (1990). The ship of the desert: The dromedary camel (Camelus dromedarius), a domesticated animal species well adapted to extreme conditions of aridness and heat. Rangifer, 10(3), 231–236. https://doi.org/10.7557/2.10.3.860
    21. Bornstein, S., & Younan, M. (2013). Significant camel diseases. In Camels in Asia and North Africa: Interdisciplinary Perspectives on Their Past and Present Significance. Austrian Academy of Sciences.
    22. Bouâouda, H., Achâaban, M. R., Ouassat, M., Oukassou, M., Piro, M., Challet, E., El Allali, K., & Pévet, P. (2014). Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions. Physiological Reports, 2(9), e12151. https://doi.org/10.14814/phy2.12151
    23. Boukerrou, M., Ridouh, R., Tekkouk-Zemmouchi, F., & Guintard, C. (2023). Principal anatomy particularities in dromedary compared to ox: Digestive and respiratory systems. Biology and Life Sciences Forum, 22(1), 13. https://doi.org/10.3390/blsf2023022013
    24. Dittmann, M. T., Runge, U., Ortmann, S., Lang, R. A., Moser, D., Galeffi, C., Schwarm, A., Kreuzer, M., & Clauss, M. (2015). Digesta retention patterns of solute and different-sized particles in camelids compared with ruminants and other foregut fermenters. Journal of Comparative Physiology B, 185, 559–573.
    25. Easton, M. G. (1897). “Love.” In Easton's Bible Dictionary (3ª ed.). King James Bible Dictionary. Retrieved from www.kingjamesbibledictionary.com/Dictionary/love
    26. El-Gendy, S. A. A., Alsafy, M. A. M., Rutland, C. S., Ez Elarab, S. M., Abd-Elhafeez, H. H., & Kamal, B. M. (2023). Ossa cordis and os aorta in the one-humped camel: Computed tomography, light microscopy, and morphometric analysis. Microscopy Research and Technique, 86(1), 53–62. https://doi.org/10.1002/jemt.24256
    27. Elkhawad, A. O. (1992). Selective brain cooling in desert animals: The camel (Camelus dromedarius). Comparative Biochemistry and Physiology, Part A: Comparative Physiology, 101(2), 195–201. https://doi.org/10.1016/0300-9629(92)90522-r
    28. Farah, Z. (1996). Camel Milk: Properties and Products. Swiss Centre for Development Cooperation in Technology and Management.
    29. Fath El-Bab, M. R., Abou-Elhamd, A. S., & Abd-Elkareem, M. (2017). How the structure of the sweat glands of camel symphonizes their reliable function. Journal of Animal Health and Production, 5(1), 19–23.
    30. Faye, B. (2014). The camel today: Assets and potentials. Anthropozoologica, 49(2), 167–176. https://doi.org/10.5252/az2014n2a01
    31. Faye, B. (2022). Is the camel conquering the world? Animal Frontiers, 12(4), 8–16. https://doi.org/10.1093/af/vfac034
    32. Faye, B., & Bengoumi, M. (2018). Camel Clinical Biochemistry and Hematology. Cham: Springer. https://doi.org/10.1007/978-3-319-95562-9
    33. Fesseha, H., & Desta, W. (2020). Comparative morphological study of the rumen of dromedary camels (Camelus dromedarius) and cattle. International Journal of Zoology Studies, 5(2), 23–28.
    34. Franklin, W. (2011). Family Camelidae camels. In Handbook of the Mammals of the World, 2, 206–246.
    35. Gaughan, J. B. (2011). Which physiological adaptation allows camels to tolerate high heat–and what more can we learn? Journal of Camelid Science, 4, 85–88.
    36. Gebreyohanes, G. M., & Assen, M. A. (2017). Adaptation mechanisms of camels (Camelus dromedarius) for desert environment: A review. Journal of Veterinary Science & Technology, 8(1), 1–5. https://doi.org/10.4172/2157-7579.1000486
    37. Harek, D., El Mokhefi, M., Ikhlef, H., et al. (2022). Gene-driving management practices in the dromedary husbandry systems under arid climatic conditions in Algeria. Pastoralism, 12, 6. https://doi.org/10.1186/s13570-021-00219-z
    38. Herbison, F. L., & George, W. (2024). Camel. In Encyclopedia Britannica. Retrieved from https://www.britannica.com/animal/camel
    39. Hong, J. M., Choi, E. S., & Park, S. Y. (2022). Selective brain cooling: A new horizon of neuroprotection. Frontiers in Neurology, 13, 873165. https://doi.org/10.3389/fneur.2022.873165
    40. Hoter, A., Rizk, S., & Naim, H. Y. (2019). Cellular and molecular adaptation of Arabian camel to heat stress. Frontiers in Genetics, 10, 588. https://doi.org/10.3389/fgene.2019.00588
    41. Jessen, C. (2001). Selective brain cooling in mammals and birds. Japanese Journal of Physiology, 51(3), 291–301. https://doi.org/10.2170/jjphysiol.51.291
    42. Kadwell, M., Fernandez, M., Stanley, H. F., Baldi, R., Wheeler, J. C., Rosadio, R., & Bruford, M. W. (2001). Genetic analysis reveals the wild ancestors of the llama and the alpaca. Proceedings of the Royal Society B: Biological Sciences, 268(1485), 2575–2584. https://doi.org/10.1098/rspb.2001.1774
    43. Kandeel, M., Al-Taher, A., Venugopala, K. N., Marzok, M., Morsy, M., & Nagaraja, S. (2022). Camel proteins and enzymes: A growing resource for functional evolution and environmental adaptation. Frontiers in Veterinary Science, 9, 911511. https://doi.org/10.3389/fvets.2022.911511
    44. Kay, R. R. T., & Wilson, R. T. (1991). Ecophysiology of the Camelidae and desert ruminants. Journal of Tropical Ecology, 7(1), 154–155. https://doi.org/10.1017/S0266467400005253
    45. Kizhina, A. G., Kalinina, S. N., Uzenbaeva, L. B., Panchenko, D. V., Łapiński, S., Ilyukha, V. A., Pechorina, E. F., & Fokina, V. O. (2020). Comparative study of erythrocyte morphology and size in relation to ecophysiological adaptations in Rodentia species. Russian Journal of Theriology, 19(2), 161–171. https://doi.org/10.15298/rusjtheriol.19.2.06
    46. Laudadio, V., Tufarelli, V., Dario, M., Hammadi, M., Seddik, M. M., Lacalandra, G. M., & Dario, C. (2009). A survey of chemical and nutritional characteristics of halophyte plants used by camels in Southern Tunisia. Tropical Animal Health and Production, 41(2), 209–215. https://doi.org/10.1007/s11250-008-9177-7
    47. Lechner-Doll, M., Engelhardt, W. V., Abbas, A. M., Mousa, H. M., Luciano, L., & Reale, E. (1995). Particularities in forestomach anatomy, physiology, and biochemistry of camelids compared to ruminants. In J.-L. Tisserand (Ed.), Élevage et alimentation du dromadaire (pp. 19–32). Zaragoza: CIHEAM.
    48. Li, C., Liu, J., Peng, H., Sui, Y., Song, J., Liu, Y., Huang, W., Chen, X., Shen, J., Ling, Y., Huang, C., Hong, Y., & Huang, W. (2022). A camel nose-inspired highly durable neuromorphic humidity sensor with water source locating capability. ACS Nano, 16(1), 1511–1522. https://doi.org/10.1021/acsnano.1c10004
    49. Li, J., Xie, F., Wang, X., Zhang, W., Cheng, C., Wu, X., Li, M., Huo, X., Gao, X., & Wang, W. (2024). Distribution characteristics of gastric mucosal colonizing microorganisms in different glandular regions of Bactrian camels and their relationship with local mucosal immunity. PLoS One, 19(5), e0300316. https://doi.org/10.1371/journal.pone.0300316
    50. Longo-Hammouda, F. H., & Mouats, A. (2008). Comparaison de l’anatomie, la physiologie de la digestion et le métabolisme des camélides par rapport aux ruminants. Journal Algérien des Régions Arides, 7(1), 6–20.
    51. Macfarlane, W. V., Morris, R. J. H., & Howard, B. (1963). Turnover and distribution of water in desert camels, sheep, cattle, and kangaroos. Nature, 197, 270–271.
    52. McKinley, M. (2016). Interaction between thermoregulation and osmoregulation in domestic mammals.
    53. Mohamed, A. A., Kadhim, K. H., & Hussein, D. M. (2018). Morphological and histological study of the cecum and colon in adult local Camelus dromedarius. Advances in Animal and Veterinary Sciences, 6(7), 286–291.
    54. Mohamed, H. E. (2008). Factors affecting the plasma lipid status in camels (Camelus dromedarius). Journal of Biological Sciences, 3, 444–445.
    55. Mota-Rojas, D., Titto, C. G., Orihuela, A., Martínez-Burnes, J., Gómez-Prado, J., Torres-Bernal, F., Flores-Padilla, K., Carvajal-de la Fuente, V., & Wang, D. (2021). Physiological and behavioral mechanisms of thermoregulation in mammals. Animals, 11(6), 1733. https://doi.org/10.3390/ani11061733
    56. Oujad, S., & Kamel, B. (2009). Physiological particularities of dromedary (Camelus dromedarius) and experimental implications. Scandinavian Journal of Laboratory Animal Science, 36, 19–29.
    57. Pesen, T., Haydaroglu, M., Capar, S., Parlatan, U., & Unlu, M. B. (2023). Comparison of the human's and camel's red blood cell deformability by optical tweezers and Raman spectroscopy. Biochemistry and Biophysics Reports, 35, 101490. https://doi.org/10.1016/j.bbrep.2023.101490
    58. Peters, J., & von den Driesch, A. (1997). The two-humped camel (Camelus bactrianus): New light on its origin and domestication. Journal of Zoology, 242(4), 651–679.
    59. Qureshi, A. S., Rehan, S., Usman, M., Hayat, K., Umar, Z., & Sarfraz, A. (2020). Quantitative evaluation of age-related anatomical characteristics of selected digestive organs of dromedary camel. Pakistan Veterinary Journal.
    60. Sala, R. (2017). The domestication of camel in the literary, archaeological and petroglyph records. Journal of Arid Land Studies, 26(4), 205–211. https://doi.org/10.14976/jals.26.4_205
    61. Schmidt-Nielsen, K. (1997). Animal Physiology: Adaptation and Environment. Cambridge: Cambridge University Press.
    62. Schwartz, H. J., et al. (1992). The One-Humped Camel (Camelus dromedarius) in Eastern Africa: A Pictorial Guide to Diseases, Health Care and Management. Weikersheim: Margraf.
    63. Soliman, M. K. (2015). Functional anatomical adaptations of dromedary (Camelus dromedarius) and ecological evolutionary impacts in KSA. In Proceedings of the International Conference on Plant, Marine and Environmental Sciences (PMES-2015), Kuala Lumpur, Malaysia, 1–5 January 2015 (pp. 19–22).
    64. Strauss, W. M., Hetem, R. S., Mitchell, D., Maloney, S. K., O'Brien, H. D., Meyer, L. C. R., & Firth, M. (2012). Physiological and thermoregulatory adaptations to heat in camels. Journal of Arid Environments, 86, 1–8.
    65. Wheeler, J. C. (2012). South American camelids: Past, present and future. Journal of Camelid Science, 5, 1–24.
    66. Windberger, U., Auer, R., Plasenzotti, R., Eloff, S., & Skidmore, J. A. (2018). Temperature dependency of whole blood viscosity and red cell properties in desert ungulates: Studies on scimitar-horned oryx and dromedary camel. Clinical Hemorheology and Microcirculation, 69(4), 533–543. https://doi.org/10.3233/CH-189204
    67. Yagil, R. (1985). The desert camel: Comparative physiological adaptation. Comparative Biochemistry and Physiology Part A: Physiology, 81(4), 601–604. https://doi.org/10.1016/0300-9629(85)90219-X

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Kebir, N. E., Berber, N., & Zahzeh, M. R. (2024). Anatomical and physiological properties of the dromedary: A potential sustainability alternative and a vital asset in the era of climate change. Journal of Animal Behaviour and Biometeorology, 12(4), 2024031. https://doi.org/10.31893/jabb.2024031
  • Article viewed - 545
  • PDF downloaded - 169