• Abstract

    The objective of this study was to determine the optimal ratio of BMR sorghum, which has a low lignin content, and T. diversifolia, which has a high protein content, as an alternative forage for ruminant feed. The study employed a fully randomized design comprising four treatments and four replications. The experimental treatments included T1 (80% BMR sorghum + 20% T. diversifolia), T2 (70% BMR sorghum + 30% T. diversifolia), T3 (60% BMR sorghum + 40% T. diversifolia), and T4 (50% BMR sorghum + 50% T. diversfolia). This study evaluated diet treatments by observing in vitro nutrient digestibility (including dry matter, organic matter, and crude protein), as well as fiber fraction digestibility (NDF, ADF, cellulose, and hemicellulose), rumen fluid characteristics (pH, NH3, and VFA), gas production (methane gas and total gas), total protozoan population, microbial biomass, and microbial protein synthesis. Compared with the other dietary treatments, the combination of 60% BMR sorghum and 40% T. diversifolia resulted in significantly (P>0.05) greater levels of in vitro nutrient digestibility; NH3, volatile fatty acid (VFA), and total gas production; microbial protein synthesis; and microbial biomass. However, 50% BMR sorghum and 50% T. diversifolia tended to decrease all of the parameters. In conclusion, the combination of 60% BMR sorghum and 40% T. diversifolia as ruminant feed impacts optimal nutrient digestibility, microbial protein synthesis, rumen fluid characteristics, and microbial biomass. Furthermore, this combination effectively decreased methane gas production and protozoan populations.

  • References

    1. Abdeltawab A, Kandil A, Boraei M, El-Sysy M (2022). Impact of Exogenous Fibrolytic Enzymes Oni-Nutritional Evaluation and Productive Performance of Growing Buffalo Calves. Egyptian Journal of Nutrition and Feeds. 25(2): 149–156. https://doi.org/10.21608/ejnf.2022.256701
    2. Abdurachman A, Askar S (2000). Comparative study of total VFA analysis with distillation methods and gas chromatography (in Indonesian title). Temu Teknis Fungsional Non Peneliti.
    3. Agustin F, Pazla R, Jamarun N, Suryadi H (2024). Exploring the Impact of Processed Cassava Peel on Microbial Dynamics and in vitro Nutrient Digestibility in Ruminant Diets. International Journal of Veterinary Science. 13(4): 463–470. https://doi.org/10.47278/journal.ijvs/2023.119
    4. Antonius A, Pazla R, Putri EM, Negara W, Laia N, Ridla M, Suharti S, Jayanegara A, Asmairicen S, Marlina L, Marta Y (2023). Effectiveness of herbal plants on rumen fermentation, methane gas emissions, in vitro nutrient digestibility, and population of protozoa. Veterinary World. 16(7): 1477–1488. https://doi.org/10.14202/vetworld.2023.1477-1488
    5. AOAC. Association of Official Analyticall Chemists International (2005). Official Methods of Analysis. 18th ed. In Association of Official Analytical, Chemists International, Maryland, USA (Issue February).
    6. Budisatria IGS, Atmoko BA, Baliarti E, Widi TSM, Ibrahim A, Vierman A (2020). Nutrient Adequacy Evaluation of Aceh Cattle Fed with Concentrate for Forage Substitution and Performance Improvement. IOP Conference Series: Earth and Environmental Science, 465(1):1–5. https://doi.org/10.1088/1755-1315/465/1/012019
    7. Budisatria IGS, Ibrahim A, Baliarti E, Widi TSM, Vierman V, Koesmara H, Atmoko BA (2019). Performance of Aceh cattle fed by concentrate with different levels. IOP Conference Series: Earth and Environmental Science. 387(1): 3–7. https://doi.org/10.1088/1755-1315/387/1/012040
    8. Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC (2018). Tiny but mighty: The role of the rumen microbes in livestock production. Journal of Animal Science, 96(2): 752–770. https://doi.org/10.1093/jas/skx053.
    9. Conway BEJ, Malley EO (1942). Microdiffusion Methods: Ammonia and Urea Using Buffered Absorbents (Revised Methods for Ranges Greater than 10 µg N). Biochemistry Journal. 36: 655–661.
    10. Fievez V, Babayemi OJ, Demeyer D (2005). Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology, 123-124: 197–210. https://doi.org/10.1016/j.anifeedsci.2005.05.001
    11. Goering HK, Van Soest PJ (1970). Forage Fiber Analyses. (Apparatus, Reagents, Procedures, and Some Applications). In Agriculture Handbook No. 379. United States Department of Agriculture, Washington, DC (Issue 379).
    12. Hariadi BT, Santoso B (2010). Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. Journal of the Science of Food and Agriculture, 90(3): 456–461. https://doi.org/10.1002/jsfa.3839
    13. Jamarun N, Zain M, Arief A, Pazla R (2017a). Effects of calcium, phosphorus and manganese supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on laccase activity and in vitro digestibility. Pakistan Journal of Nutrition, 16(3): 119–124. https://doi.org/10.3923/pjn.2017.119.124
    14. Jamarun N, Zain M, Arief A, Pazla R (2017b). Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pakistan Journal of Nutrition, 17(1): 39–45. https://doi.org/10.3923/pjn.2018.39.45
    15. Khota W, Pholsen S, Higgs D, Cai Y (2017). Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria. Asian-Australasian Journal of Animal Sciences, 30(11): 1568–1574. https://doi.org/10.5713/ajas.16.0502
    16. Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, Gómez-Bravo CA, Aguilar-Pérez CF, Solorio-Sánchez FJ (2020). Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Frontiers in Veterinary Science, 7(584): 1–14. https://doi.org/10.3389/fvets.2020.00584.
    17. Lowry OH, Rosebrough N, Farr A, Randall R (1951). Protein measurement with the Folin reagent. Journal of Biological Chemistry, 193(1): 265–275.
    18. McDonald P, Edwards RA, Grennhalgh JFD, Morgan CA, Sinclair LA, Wilkinson RG (2020). Animal Nutrition 8th Edition. Pearson.
    19. Negara W, Roswanjaya YP, Parastiwi HA, Negoro S, Wahyuni DS, Surachman M, Angga W (2024). The Development of Probiotics for Reducing Methane Gas. AIP Conference Proceedings, 1–7. https://doi.org/https://doi.org/10.1063/5.0184285
    20. Ogimoto K, Imai S (1981). Atlas of rumen microbiology. Japan Scientific Societies Press.
    21. Oluwasola T, Dairo FA (2016). Proximate composition, amino acid profile and some anti-nutrients of Tithonia diversifolia cut at two different times. African Journal of Agricultural Research, 11(38): 3659–3663. https://doi.org/10.5897/ajar2016.10910
    22. Parastiwi HA, Negara W, Martono S, Negoro PS, Wahyuni DS, Maulana S, Gopar RA, Purba RD (2024). Prediction of In Vitro True Digestibility from Fiber Fraction Content in Kikuyu Grass (Pennisetum clandestinum) - Study using Horse Fecal Inoculum. AIP Conference Proceedings, 2957: 1–7. https://doi.org/10.1063/5.0185796
    23. Pazla R, Jamarun N, Agustin F, Zain M, Arief A, Cahyani NO (2020). Effects of supplementation with phosphorus, calcium and manganese during oil palm frond fermentation by Phanerochaete chrysosporium on ligninase enzyme activity. Biodiversitas, 21(5): 1833–1838. https://doi.org/10.13057/biodiv/d210509
    24. Pazla R, Jamarun N, Agustin F, Zain M, Arief A, Cahyani NO (2021). In vitro nutrient digestibility, volatile fatty acids and gas production of fermented palm fronds combined with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum Purpureum). IOP Conference Series: Earth and Environmental Science, 888(1): 1–8. https://doi.org/10.1088/1755-1315/888/1/012067
    25. Pazla R, Jamarun N, Warly L, Yanti G, Nasution NA (2021). Lignin content, ligninase enzyme activity and in vitro digestability of sugarcane shoots using Pleurotus ostreatus and Aspergillus oryzae at different fermentation times. American Journal of Animal and Veterinary Sciences, 16(3): 192–201. https://doi.org/10.3844/ajavsp.2021.192.201
    26. Pazla R, Jamarun N, Zain M, Yanti G, Chandra R (2021). Quality evaluation of tithonia (Tithonia diversifolia) with fermentation using Lactobacillus plantarum and Aspergillus ficuum at different incubation times. Biodiversitas, 22(9), 3936–3942.
    27. Pazla R, Putri EM, Jamarun N, Negara W, Khan FA, Zain M, Arief A, Yanti G, Antonius A, Priyatno TP, Surachman M, Darmawan IWA, Herdis H, Marlina L, Asmairicen S, Marta Y (2023). Pre-treatments of Mirasolia diversifolia using Lactobacillus bulgaricus at different dosages and fermentation times: Phytic acid concentration, enzyme activity, and fermentation characteristics. South African Journal of Animal Science, 53(3): 429–437. https://doi.org/10.4314/sajas.v53i3.11
    28. Pazla R, Yanti G, Jamarun N, Zain M, Triani HD, Putri EM, Srifani A (2024). Identification of phytase producing bacteria from acidifying Tithonia diversifolia: Potential for ruminant feed development. Saudi Journal of Biological Sciences, 31(7): 1–9. https://doi.org/10.1016/j.sjbs.2024.104006
    29. Pino F, Heinrichs AJ (2016a). Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers. Journal of Dairy Science, 99(4): 2797–2810. https://doi.org/10.3168/jds.2015-10034
    30. Pino F, Heinrichs AJ (2016b). Sorghum forage in precision-fed dairy heifer diets. Journal of Dairy Science, 100(1): 224–235. https://doi.org/10.3168/jds.2016-11551
    31. Putri EM, Zain M, Warly L, Hermon H (2019). In vitro evaluation of ruminant feed from West Sumatera based on chemical composition and content of rumen degradable and rumen undegradable proteins. Veterinary World, 12(9): 1478–1483. https://doi.org/10.14202/vetworld.2019.1478-1483
    32. Putri EM, Zain M, Warly L, Hermon H (2021). Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Veterinary World, 14(3): 640–648. https://doi.org/10.14202/VETWORLD.2021.640-648
    33. Ramaiyulis R, Ningrat RWS, Zain M, Warly L (2018). Optimization of Rumen Microbial Protein Synthesis by Addition of Gambier Leaf Residue to Cattle Feed Supplement. Pakistan Journal of Nutrition, 18(1): 12–19. https://doi.org/10.3923/pjn.2019.12.19
    34. Ramaiyulis R, Zain M, Ningrat RWS, Warly L (2018). Protection of Protein in Cattle Feed Supplement from Rumen Microbial Degradation with Addition of Gambier Leaf Residue. International Journal of Zoological Research, 15(1): 6–12. https://doi.org/10.3923/ijzr.2019.6.12
    35. Rofiq MN, Negara W, Martono S, Gopar RA, Boga M (2021). Potential effect of some essential oils on rumen methane reduction and digestibility by in Vitro incubation technique. IOP Conference Series: Earth and Environmental Science, 905(1): 1–9. https://doi.org/10.1088/1755-1315/905/1/012138
    36. Sari RM, Zain M, Jamarun N, Ningrat RWS, Elihasridas E, Putri EM (2022a). Improving Rumen Fermentation Characteristics and Nutrient Digestibility by Increasing Rumen Degradable Protein in Ruminant Feed Using Thitonia diversifolia and Leucaena leucocephala. International Journal of Veterinary Science, 11(3): 353–360. https://doi.org/0. https://doi.org/10.47278/journal.ijvs/2021.121
    37. Sari RWW, Jamarun N, Arief A, Pazla R, Yanti G, Ikhlas Z (2022b). Nutritional Analysis of Mangrove Leaves (Rhizophora apiculata) Soaking with Lime Water for Ruminants Feed. IOP Conference Series: Earth and Environmental Science, 1020(1): 1–6. https://doi.org/10.1088/1755-1315/1020/1/012010
    38. Sastrawijaya G (2015). Addition of bitter melon (Momordica charantia L) flour in ruminant feed and the effect on digestibility and gas production in vitro. IPB University, Bogor, Indonesia.
    39. Sriagtula R, Karti PDMH, Abdullah L, Supriyanto S, Astuti DA (2016). Growth, biomass and nutrient production of brown midrib sorghum mutant lines at different harvest times. Pakistan Journal of Nutrition, 15(6): 524–531. https://doi.org/10.3923/pjn.2016.524.531
    40. Sriagtula R, Sowmen S, Aini Q (2019). Growth and productivity of Brown Midrib Sorghum Mutant Line Patir 3.7 (Sorghum bicolor L. Moench) Treated with different levels of nitrogen fertilizer. Tropical Animal Science Journal, 42(3): 209–214. https://doi.org/10.5398/tasj.2019.42.3.209
    41. Wahyuni S, Sunarso S, Eko Prasetiyono BWH, Satrija F, Jayanegara A (2024). Ruminal fermentation characteristics and methane emissions with the addition of Cassia spp. extract to a total mixed ration based on corn stover. Journal of Animal Behaviour and Biometeorology, 12(1): 1–9. https://doi.org/10.31893/jabb.2024006
    42. Widodo S, Shiddieqy MI, Wahyono T, Widiawati Y, Muttaqin Z (2023). Analysis of Correlation between Nutrient Content, Digestibility, and Gas Production of Forages in Indonesia. Advances in Animal and Veterinary Sciences, 11(11): 1770-1778. https://doi.org/10.17582/journal.aavs/2023/11.11.1770.1778
    43. Yanti G, Jamarun N, Elihasridas E, Astuti T (2021). Quality Improvement of Sugarcane Top as Animal Feed with Biodelignification by Phanerochaete chrysosporium Fungi on In-vitro Digestibility of NDF, ADF, Cellulose and Hemicellulose. Journal of Physics: Conference Series, 1940(1): 1–6. https://doi.org/10.1088/1742-6596/1940/1/012063
    44. Zain M, Despal D, Tanuwiria UH, Pazla R., Putri EM, Amanah U (2023). Evaluation of Legumes, Roughages, and Concentrates Based on Chemical Composition, Rumen Degradable and Undegradable Proteins By In Vitro Method. International Journal of Veterinary Science, 12(4): 528–538. https://doi.org/10.47278/journal.ijvs/2022.218
    45. Zain M, Putri EM, Rusmana WSN, Erpomen E, Makmur M (2020). Effects of supplementing Gliricidia sepium on ration based ammoniated rice straw in ruminant feed to decrease methane gas production and to improve nutrient digestibility (in-vitro). International Journal on Advanced Science, Engineering and Information Technology, 10(2): 724–729. https://doi.org/10.18517/ijaseit.10.2.11242
    46. Zain M, Rahman J, Khasrad K, Erpomen E (2015). In vitro fermentation characteristics of palm oil byproducts which is supplemented with growth factor rumen microbes. Pakistan Journal of Nutrition, 14(9): 625–628. https://doi.org/10.3923/pjn.2015.625.628
    47. Zain M, Tanuwiria UH, Syamsu JA, Yunilas Y, Pazla R, Putri EM, Makmur M, Amanah U, Shafura PO, Bagaskara B (2024). Nutrient digestibility, characteristics of rumen fermentation, and microbial protein synthesis from Pesisir cattle diet containing non-fiber carbohydrate to rumen degradable protein ratio and sulfur supplement. Veterinary World, 17(3): 672–681. https://doi.org/10.14202/vetworld.2024.672-681

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Putri, E. M., Pazla, R., Jamarun, N., Agustin, F., Yanti, G., Ikhlas, Z., Arief, A., Negara, W., Khan, F. A., Surachman, M., Darmawan, I. W. A., Akhadiarto, S., Herdis, H., Priyatno, T. P., & Lestari, P. (2024). Optimizing ruminant feed efficiency: The synergistic effects of BMR sorghum and <em>Tithonia diversifolia</em> on nutrient digestibility, rumen function, and methane mitigation. Journal of Animal Behaviour and Biometeorology, 12(3), 2024022. https://doi.org/10.31893/jabb.2024022
  • Article viewed - 442
  • PDF downloaded - 240