• Abstract

    Climate change is shifting rainfall patterns, air temperature, river flows, and sea levels globally, resulting in changes in ground and surface water quality due to salinization, especially in arid and semiarid regions. During dry periods, the main water quality issue is a high quantity of salt in the water. Whilst water with fewer than 3,000 mg/L total salts is beneficial to all livestock species, tolerances vary greatly based on conditions and circumstances. Understanding the normal salt tolerance of animals without harming their production and health is important for sustainable livestock production, especially in dry areas. Understanding the normal salt tolerance of animals without harming their production and health is important for sustainable livestock production, especially in dry areas. Thus, this review examined the physiological, behavioral, hematological, and biochemical responses of sheep and goats in dryland areas under climate change scenarios. Despite changes in physiological, blood, biochemical, feed and water intake, sheep and goats adapt to salinity levels to drinking water in arid environments. Adaptable and native breeds are known to be more tolerant of saline water than selected exotic breeds. Small ruminants experience a decrease in food intake and weight, a decrease in breathing rate, and an increase in blood metabolite concentration when the salt in their drinking water increases. The concept that native and adapted small ruminant breeds can withstand high water salinity is gaining popularity in scientific research worldwide. More research is needed to investigate the water tolerance capabilities of adapted breeds, especially in dry and water-saline regions affected by climate change.



  • References

    1. Ahmed M, Hayat R, Ahmad M, ul-Hassan M, Kheir AMS, ul-Hassan F, ur-Rehman MH, Shaheen FA, Raza MA, Ahmad S (2022) Impact of Climate Change on Dryland Agricultural Systems: A Review of Current Status, Potentials, and Further Work Need. International Journal of Plant Production 16:341–363. doi: 10.1007/s42106-022-00197-1.
    2. Ahmed T, Zounemat-Kermani M, Scholz M (2020) Climate change, water quality and water-related challenges: A review with focus on Pakistan. International Journal of Environmental Research and Public Health 17:1–22. doi: 10.3390/ijerph17228518.
    3. Akinmoladun OF, Muchenje V, Fon FN, Mpendulo CT (2019) Small ruminants: Farmers’ hope in a world threatened by water scarcity. Animals 9:1–20. doi: 10.3390/ani9070456.
    4. Akinrinmade JF, Akinrinde AS (2012) Hematological and serum biochemical indices of West African dwarf goats with foreign body rumen impaction. Nigerian Journal of Physiological Sciences 27: 83–87.
    5. Alam M, Hashem M, Rahman M, Hossain M, Haque M, Sobhan Z, Islam M (2013) Effect of Heat Stress on Behavior, Physiological and Blood Parameters of Goat. Progressive Agriculture 22: 37–45. doi:10.3329/pa.v22i1-2.16465.
    6. Araújo GLD, Voltolini TV, Chizzotti ML, Turco HN, Carvalho FR (2010) Water and small ruminant production. Revista Brasileira de Zootecnia 29: 326–336.
    7. Assad F, El-Sherif MMA (2002) Effect of drinking saline water and feed shortage on adaptive responses of sheep and camels. Small Ruminant Research 45: 279–290. doi:10.1016/S0921-4488(02)00083-4.
    8. Attia-Ismail SA, Abdo AR, Asker ART (2008) Effect of Salinity Level in Drinking Water on Feed Intake, Nutrient Utilization, Water Intake and Turnover and Rumen Function in Sheep and Goats. Egyptian J of Sheep and Goat Sciences (Special Issue 2:77–92.
    9. Bannari A, Al-Ali Z (2020) Assessing Climate Change Impact on Soil Salinity Dynamics between 1987 – 2017 in Arid Landscape. Remote Sensing 12: 2794.
    10. Bhat SA, Mir MR, Qadir S, Allaie IHK, Bilal IHS (2011) Hematological and biochemical parameters of Kashmiri goats in different climatic conditions. International Journal of Agricultural Science and Veterinery Medicine 5: 481–487. doi:10.5455/ijavms.12944.
    11. Caldeira RM, Belo AT, Santos CC, Vazques MI, Portugal AV (2007) The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Ruminant Research 68: 233–241. doi:10.1016/j.smallrumres.2005.08.027.
    12. Cañedo-argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB (2013) Salinisation of rivers : An urgent ecological issue. Environmental Pollution 173: 157–167. doi:10.1016/j.envpol.2012.10.011.
    13. Chang SW, Clement TP, Simpson MJ, Lee KK (2011) Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources 34: 1283–1291. doi:10.1016/j.advwatres.2011.06.006.
    14. Cheng M, McCarl B, Fei C (2022) Climate Change and Livestock Production: A Literature Review. Atmosphere 13. doi:10.3390/atmos13010140.
    15. Cheng L, Trenberth KE, Gruber N, Abraham JP, Fasullo JT, Li G, Mann ME, Zhao X, Zhu J (2020) Improved estimates of changes in upper ocean salinity and the hydrological cycle. Journal of Climate 33:10357–10381. doi:10.1175/JCLI-D-20-0366.1.
    16. Ciliberti MG, Caroprese M, Albenzio M (2022) Climate resilience in small ruminant and immune system: An old alliance in the new sustainability context. Small Ruminant Research 210: 106662. doi:10.1016/J.SMALLRUMRES.2022.106662.
    17. Costa ECB, Araújo GGL, Oliveira JS, Santos EM, Henriques LT, Perazzo AF, Zanine AM, Pereira GA, Pinho RMA (2019) Effect of salt concentrations on in vitro rumen fermentation of cellulose, starch, and protein. South African Journal of Animal Sciences 49: 1139–1147. doi:10.4314/SAJAS.V49I6.17.
    18. Costa RG, Freire RMB, de Araújo GGL, Queiroga R de CR do E, Paiva GN, Ribeiro NL, de Oliveira RL, Domínguez R, Lorenzo JM (2021) Effect of increased salt water intake on the production and composition of dairy goat milk. Animals 11: 1–10. doi:10.3390/ani11092642.
    19. Curran G (2014) Water for livestock: interpreting water quality tests. Primefact 4. https://www.ag.ndsu.edu/publications/livestock/livestock-water-quality.
    20. Custodio SAS, Marcus PT, Goulart DAL da S, Oliveira R, Carvalho KMD, De ER (2016) Feeding Behavior of Beef Cattle Fed Different Forages and Housed in Individual or Collective Pens Feeding behavior of beef cattle fed different forages and housed in individual or collective pens. Journal of Animal Behaviour and Biometeorology 5:20–28. doi:10.14269/2318-1265/jabb.v5n1p20-28.
    21. Digby SN, Blache D, Masters DG, Revell DK (2010) Responses to saline drinking water in offspring born to ewes fed high salt during pregnancy. Small Ruminant Research 91:87–92. doi:10.1016/j.smallrumres.2009.11.020.
    22. Digby SN, Chadwick MA, Blache D (2011a) Salt intake and reproductive function in sheep. Animal 5:1207–1216. doi:10.1017/S1751731111000152.
    23. Digby SN, Chadwick MA, Blache D (2011b) Salt intake and reproductive function in sheep. Animal 5:1207–1216. doi:10.1017/S1751731111000152.
    24. Dufour A (2013) Animal Waste, Water Quality and Human Health. Water Intelligence Online. doi:10.2166/9781780401249.
    25. Dye SR, Berx B, Opher J, Tinker J, Renshaw R (2020) Climate change and salinity of the coastal and marine environment around the UK. MCCIP Science Review 76–102. doi:doi: 10.14465/2020.arc04.sal.
    26. Earman S, Dettinger M (2011) Potential impacts of climate change on groundwater resources - A global review. Journal of Water and Climate Change 2: 213–229. doi:10.2166/wcc.2011.034.
    27. Emon M Van (2018) Water Quality for Livestock. Handbook of Hydrology 3:1–5.
    28. Formiga DS, Araújo LD, Paulo D, Medeiros PF, Rodrigues CM, De Andrade AP, Da Silva DS, Saraiva EP (2020) Ingestive behavior and feeding preference of goats reared in degraded caatinga. Ciencia Animal Brasileira 21. doi:10.1590/1809-6891v21e-52435.
    29. Furtado DA, CarvalhoJunior SB, Lopes Neto JP, De Souza BB, Batista Dantas NL (2020) Adaptability of sheep to three salinity levels in different environments. Semina:Ciencias Agrarias 41:283–291. doi:10.5433/1679-0359.2020v41n1p283.
    30. Gerard S (2016) ‘Water quality for livestock. Department of Agriculture and Food. Government of Western Australia.’
    31. Ghanem M, Zeineldin M, Eissa A, El Ebissy E, Mohammed R, Abdelraof Y (2018) The effects of saline water consumption on the ultrasonographic and histopathological appearance of the kidney and liver in barki sheep. Journal of Veterinary Medical Science 80:741–748. doi:10.1292/jvms.17-0596.
    32. Giri A, Bharti VK, Kalia S, Arora A, Balaje SS, Chaurasia OP (2020) A review on water quality and dairy cattle health: a special emphasis on high-altitude region. Applied Water Science 10:1–16. doi:10.1007/s13201-020-1160-0.
    33. Haan C (2016) ‘Prospects for Livestock-Based Livelihoods in Africa’s Drylands.’ doi:10.1596/978-1-4648-0836-4.
    34. Halimani T, Marandure T, Chikwanha OC, Molotsi AH, Abiodun BJ, Dzama K, Mapiye C (2021) Smallholder sheep farmers’ perceived impact of water scarcity in the dry ecozones of South Africa: Determinants and response strategies. Climate Risk Management 34:100369. doi:10.1016/j.crm.2021.100369.
    35. Harini KR, Singh RR, Kumar A, Sriranga KR (2022) Effect of drinking water salinity on productive performance and blood biochemical parameters in Surti kids under tropical conditions. Indian Journal of Animal Sciences 92:896–901.
    36. Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences 25:1102–1114. doi:10.1016/j.sjbs.2018.03.009.
    37. Hekal FA-HA-M (2015) Homeostatic responses of sheep to salinity and heat stress conditions. Cairo University, EGYPT.
    38. Higgins SF, Gumbert AA (2008) Drinking Water Quality Guidelines for Cattle. Agriculture and Natural Resources Publications 1–4. http://www2.ca.uky.edu/agcomm/pubs/id/id170/id170.pdf.
    39. Hirwa H, Li F, Qiao Y, Measho S, Muhirwa F, Tian C, Leng P, Ingabire R, Itangishaka AC, Chen G, Turyasingura B (2022) Climate change–drylands–food security nexus in Africa: From the perspective of technical advances, challenges, and opportunities. Frontiers in Environmental Science 10:1–17. doi:10.3389/fenvs.2022.851249.
    40. Huntington GB, Archibeque SL (2000) Practical aspects of urea and ammonia metabolism in ruminants. Journal of Animal Science 77: 1. doi:10.2527/jas2000.77e-suppl1y.
    41. IHP (2015) IHP-VIII Addressing Water Scarcity and Quality. Activities and Outcomes 2014-2015.
    42. IPCC (2014) Impacts, Adaptation, and Vulnerability: Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change 1–44. http://www.citeulike.org/group/15400/article/13497155.
    43. Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL, Beklioǧlu M, Brucet S, Volta P, González-Bergonzoni I, Nielsen A (2014) Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73:88–111. doi:10.4081/jlimnol.2014.844.
    44. Konapala G, Mishra AK, Wada Y, Mann ME (2020) Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications 11:1–10. doi:10.1038/s41467-020-16757-w.
    45. Leite JHGM, Façanha DAE, Costa WP, Chaves DF, Guilhermino MM, Silva WST, Bermejo LA (2018) Thermoregulatory responses related to coat traits of brazilian native ewes: An adaptive approach. Journal of Applied Animal Research 46:353–359. doi:10.1080/09712119.2017.1302877.
    46. Leite PG, Marques JI, Furtado DA, Pinheiro J, Neto L (2019) Ethology , physiological , and ingestive responses of sheep subjected to different temperatures and salinity levels of water. International Journal of Biometeorology 63:1091–1098.
    47. Levey AS (2006) Assessing Kidney Function — Measured and Estimated Glomerular Filtration Rate. The New England Journal of Medicine 2473–2483.
    48. Ma B, Hu C, Zhang J, Ulbricht M, Panglisch S (2022) Impact of Climate Change on Drinking Water Safety. ACS Environmental Science and Technology Water 2, 259–261. doi:10.1021/acsestwater.2c00004.
    49. Mandal M, Mishra C, Dash SK, Priyadarshini P, Sabat SS, Swain L, Sahoo M (2018) Genomic insight to the disease resistance in goat. The Pharma Innovation 7:98–103. www.thepharmajournal.com.
    50. Marai IFM, El-Darawany AHA, Ismail ESAF, Abdel-Hafez MAM (2006) Tunica dartos index as a parameter for measurement of adaptability of rams to subtropical conditions of Egypt. Animal Science Journal 77:487–494. doi:10.1111/j.1740-0929.2006.00376.x.
    51. McDowell RW, Wilcock RJ (2008) Water quality and the effects of different pastoral animals. New Zealand Veterinary Journal 56:289–296. doi:10.1080/00480169.2008.36849.
    52. Mdletshe ZM, Chimonyo M, Marufu MC, Nsahlai I V. (2017) Effects of saline water consumption on physiological responses in Nguni goats. Small Ruminant Research 153:209–211. doi:10.1016/j.smallrumres.2017.06.019.
    53. Mdletshe ZM, Ndlela SZ, Nsahlai IV, Chimonyo M (2018) Farmer perceptions on factors influencing water scarcity for goats in resource-limited communal farming environments. Tropical Animal Health and Production 50:1617–1623. doi:10.1007/s11250-018-1603-x.
    54. Meehan MA, Stokka G, Mostrom M (2021) Livestock Water Quality (AS1764). NDSU Extension Service 1764,. https://www.ag.ndsu.edu/publications/livestock/livestock-water-quality.
    55. Mehdi WG, Salem H Ben, Abidi S (2016) Effect of drinking salt water on live weight change and grazing behavior of Barbarine sheep during pregnancy and lactation periods. Options Méditerranéennes Series A: Mediterranean Seminars 122:119–122. http://om.ciheam.org/om/pdf/a114/a114.pdf.
    56. Mekonnen Z (2016) The Climate Change-Agriculture Nexus in Drylands of Ethiopia. ‘Veg. Dyn. Chang. Ecosyst. Hum. Responsib. Intech.’ pp. 225–240 https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
    57. Minka NS, Ayo JO (2010) Physiological responses of food animals to road transportation stress. African Journal of Biotechnology 9:6601–6613. doi:10.5897/AJB2010.000-3309.
    58. Mostrom M, Ensley S (2020) Livestock Water Qaulity.
    59. Moura JH de A, Araujo GGL de, Saraiva EP, Albuquerque5 ÍRR de, Turco SHN, Pinheiro CSA, Santos NM (2016) Ingestive behavior of crossbred Santa Inês sheep fed water with different salinity levels 1 Comportamento ingestivo de ovinos mestiços da raça santa inês recebendo água com níveis de salinidade. Semina: Ciências Agrárias, Londrina 37:1057–1068. doi:10.5433/1679-0359.2016v37n2p1057.
    60. Mujere N, Moyce W (2016) Climate change impacts on surface water quality. Environmental Sustainability and Climate Change Adaptation Strategies 322–340. doi:10.4018/978-1-5225-1607-1.ch012.
    61. Naqvi SMK, De K, Gowane GR (2013) Sheep production system in arid and semi-arid regions of India. Annals of Arid Zone 52:265–274.
    62. Naqvi SMK, Kumar D, De K, Sejian V (2015) Climate Change and Water Availability for Livestock: Impact on Both Quality and Quantity. ‘Clim. Chang. Impact Livest. Adapt. Mitig.’ pp. 1–532 doi:10.1007/978-81-322-2265-1.
    63. Nasri S, Ben Salem H, Vasta V, Abidi S, Makkar HPS, Priolo A (2011) Effect of increasing levels of Quillaja saponaria on digestion, growth and meat quality of Barbarine lamb. Animal Feed Science and Technology 164:71–78. doi:10.1016/j.anifeedsci.2010.12.005.
    64. Nicholson SE (2017) Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics 55:590–635. doi:10.1002/2016RG000544.
    65. NRC (2007) ‘National Research Council. Nutrient Requirements of Small Ruminants. Sheep, Goats, Cervids, and New World Camelids.’ (washingen DC) https://doi.org/10.17226/11654.
    66. Olson S, Jansen MF, Abbot DS, Halevy I, Goldblatt C (2022) The Effect of Ocean Salinity on Climate and Its Implications for Earth’s Habitability. Geophysical Research Letters 49, 1–9. doi:10.1029/2021GL095748.
    67. Paiva GN, De Araújo GGL, Henriques LT, Medeiros AN, Filho EMB, Costa RG, De Albuquerque ÍRR, Gois GC, Campos FS, Freire RMB (2017) Water with different salinity levels for lactating goats. Semina:Ciencias Agrarias 38:2065–2074. doi:10.5433/1679-0359.2017v38n4p2065.
    68. Parker DB, Brown MS (2003) Water Consumption for Livestock and poultry production. Conservation Agriculture 181–190. doi:10.1081/E-EWS.
    69. Peng Y, Hirwa H, Zhang Q, Wang G, Li F (2021) Dryland food security in ethiopia: Current status, opportunities, and a roadmap for the future. Sustainability (Switzerland) 13. doi:10.3390/su13116503.
    70. Pfost DL, Fulhage CD, Casteel S (2001) Water quality for livestock drinking. MU Ext. Univ. Missouri-Columbia.
    71. Ranjan P, Kazama S, Sawamoto M (2006) Effects of climate change on coastal fresh groundwater resources. Global Environmental Change 16:388–399. doi:10.1016/j.gloenvcha.2006.03.006.
    72. Reneu Í, Albuquerque R De, Garcia G, Araujo L De, B TVV, Helder J, Moura DA, D RGC, E GCG, Augusto S, Costa P, F FSC, Adriano M, Queiroz Á (2020) Saline water intake effects performance , digestibility , nitrogen and water balance of feedlot lambs. Animal Production Science 60:1591–1597.
    73. Runa RA, Brinkmann L, Gerken M, Riek A (2019) Adaptation capacity of Boer goats to saline drinking water. Animal. doi:10.1017/S1751731119000764.
    74. Runa RA, Brinkmann L, Riek A, Hummel J, Gerken M (2019a) Reactions to saline drinking water in Boer goats in a free-choice system. Animal 13:98–105. doi:10.1017/S1751731118000800.
    75. Runa RA, Brinkmann L, Riek A, Hummel J, Gerken M (2019b) Reactions to saline drinking water in Boer goats in a free-choice system. Animal 13:98–105. doi:10.1017/S1751731118000800.
    76. Runa RA, Maksud S, Rahman MS, Hasan M, Alam MR (2022) Impact of drinking of saline water on hemato-biochemical parameters of Black Bengal goats in the selected areas of Bangladesh. Saudi Journal of Biological Sciences 29:103397. doi:10.1016/j.sjbs.2022.103397.
    77. Sakho-Jimbira S, Hathie I (2020) The future of agriculture in Sub-Saharan Africa. Southern Voice 1–18. http://www.researchgate.net/profile/Julius_Gatune/publication/265118100_The_Future_of_Agriculture_in_Africa/links/5417db170cf2218008beeff5.pdf.
    78. Sallenave R (2016) Water Quality for Livestock and Poultry: Guide M-112. New Mex. State Univ. 1–4.
    79. Sargeant JM, O’Connor AM (2020) Scoping Reviews, Systematic Reviews, and Meta-Analysis: Applications in Veterinary Medicine. Frontiers in Veterinary Science 7:1–14. doi:10.3389/fvets.2020.00011.
    80. Sejian V, Gaughan J, Baumgard L, Prasad C (2015) ‘Climate Change Impact on Livestock: Adaptation and Mitigation.’ doi:10.1007/978-81-322-2265-1_23.
    81. Sejian V, Maurya VP, Kumar K, Naqvi SMK (2012) Effect of multiple stresses (Thermal, Nutritional, and Walking Stress) on the reproductive performance of Malpura ewes. Veterinary Medicine International Article ID, 471760, 5. doi:10.1155/2012/471760.
    82. Sejian V, Singh AK, Sahoo A, Naqvi SMK (2014) Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress. Journal of Animal Physiology and Animal Nutrition 98:72–83. doi:10.1111/jpn.12037.
    83. Senker P (2011) Foresight: the future of food and farming, final project report. Prometheus 29:309–313. doi:10.1080/08109028.2011.628564.
    84. Thiet N, Hon N Van, Ngu NT, Thammacharoen S (2022) Effects of high salinity in drinking water on behaviors , growth , and renal electrolyte excretion in crossbred Boer goats under tropical conditions. Veterinary World 15:834–840.
    85. Tulu D, Urge M, Yusuf Y (2022) Physiological, Hematological, and Biochemical Responses in Hararghe-Highland Lamb Subjected to Water Salinity Levels of Lake Basaka in a Semiarid Area of Ethiopia. Heliyon 8: e12616. doi:10.2139/ssrn.4147065.
    86. Turner CE, Brown PJ, Oliver KIC, McDonagh EL (2022) Decomposing oceanic temperature and salinity change using ocean carbon change. Ocean Science 18:523–548. doi:10.5194/os-18-523-2022.
    87. Ullah A, Bano A, Khan N (2021) Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Frontiers in Sustainable Food Systems 5:1–16. doi:10.3389/fsufs.2021.618092.
    88. Umar S, Munir MT, Azeem T, Ali S, Umar W et al (2018) Farmer perceptions on factors influencing water scarcity for goats in resource-limited communal farming environments. Tropical Animal Health and Production 17:1617–1623. doi:10.1007/s11250-018-1603-x.
    89. UNCCD (2009) Climate Change in the African Drylands :Options and Opportunities for adaptation and mitigation.
    90. UNECA (2011) Climate Change and Water Resources of Africa : Challenges , Opportunities and Impacts.
    91. UNESCO, UN-Water (2020) ‘United Nations World Water Development Report 2020: Water and climate change.’ https://aquadocs.org/handle/1834/42227%0Ahttps://unesdoc.unesco.org/ark:/48223/pf0000372985/PDF/372985eng.pdf.multi.
    92. Vosooghi-Postindoz V, Tahmasbi A, Naserian AA, Valizade R, Ebrahimi H (2018) Effect of water deprivation and drinking saline water on performance, blood metabolites, nutrient digestibility, and rumen parameters in Baluchi lambs. Iranian Journal of Applied Animal Science 8:445–456.
    93. Wanapat M, Cherdthong A, Phesatcha K, Kang S (2015) Dietary sources and their effects on animal production and environmental sustainability. Animal Nutrition 1:96–103. doi:10.1016/j.aninu.2015.07.004.
    94. Watts N, Adger WN, Agnolucci P (2015) Health and climate change: Policy responses to protect public health. Environnement, Risques et Sante 14:466–468. doi:10.1016/S0140-6736(15)60854-6.
    95. Whitehead PG, Wade AJ, Butterfield D (2009) Potential impacts of climate change on water quality and ecology in six UK Rivers. Hydrology Research 40:113–122. doi:10.2166/nh.2009.078.
    96. Williams PA, Crespo O, Abu M, Simpson NP (2018) A systematic review of how vulnerability of smallholder agricultural systems to changing climate is assessed in Africa. Environmental Research Letters 13. doi:10.1088/1748-9326/aae026.
    97. Wiryananta, K., Safitri, R., & Prasetyo BD (2021). (2020) A new decade for social changes. Technium Social Sciences Journal 7:312–320. https://techniumscience.com/index.php/socialsciences/article/view/332/124.
    98. Yıldırır M (2020) Water Quality and Two-Way Effects in Terms of Animal Production. Toprak Su Dergisi 9:0–3.
    99. Yousfi I, Ben Salem H (2017) Effect of Increasing Levels of Sodium Chloride in Drinking Water on Intake, Digestion and Blood Metabolites in Barbarine Sheep = Effet de Niveaux Croissants de Chlorure de Sodium dans l’Eau d’Abreuvement sur l’Ingestion, la Digestion et les Métabolites Sa. Annales de l Inrat 90:202–214. doi:10.12816/0040329.
    100. Yousuf M, Alam MR, Shaikat AH, Al Faruk MS, Saifuddin AKM, Ahasan ASML, Islam K, Islam SKMA (2016) Nutritional status of high yielding crossbred cow around parturition. Journal of Advanced Veterinary and Animal Research 3:68–74. doi:10.5455/javar.2016.c134.
    101. Zayed M (2022) Impact of drinking saline water on meat production and muscles structures of Barki lambs. Advances in Animal and Veterinary Sciences 10:753–762.
    102. Zoidis E, Hadjigeorgiou I (2017) Effects of drinking saline water on food and water intake, blood and urine electrolytes and biochemical and haematological parameters in goats: A preliminary study. Animal Production Science 58:1822–1828. doi:10.1071/AN16539.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Journal of Animal Behaviour and Biometeorology

How to cite

Tulu, D., Gadissa, S., & Hundessa, F. (2023). Impact of water stress on adaptation and performance of sheep and goat in dryland regions under climate change scenarios: a systematic review. Journal of Animal Behaviour and Biometeorology, 11(2), 2023012. https://doi.org/10.31893/jabb.23012
  • Article viewed - 202
  • PDF downloaded - 60