• Abstract

    The cat (Felis catus) lives around or with humans and is considered one of the most popular pets in the world. Domestic cats have an extensive and complex vocalisation repertoire, and little is known about the meaning of their vocalisations; these animal sounds have been studied to determine their behavioural characteristics. This work implemented a computational model for cat vocalisation as a signal process to characterise it. Additionally, a recognition model is proposed to identify and associate domestic cat vocalisations with cat intentions. Domestic cat vocalisations were studied by obtaining sounds from audio and video sources stored in the web cloud and processing signals (distress, hiss, howl, meow, fright, purr, sexual call, and trill vocalisations) that belong to some cat situations (soliciting attention, complaining, surprise, threatening, welcoming, fighting, feeling hungry, mating, etc.). In measured signals, environmental noise was removed using a computational algorithm to increase the effectiveness of the recognition process. As a first approach, cat vocalisation patterns were extracted using Welch's method for spectral density estimation, appreciating vocalisation frequency characteristics and statistics. Additionally, a similarity function to compare cat vocalisation signals was developed, excluding useless patterns that could introduce computational problems in the learning phase of the recognition model. Then, an associative memory, the Lernmatrix Thresholded model, was used to recognise the domestic cat vocalisation needed, and pair associations between sounds and moods related to the recognition process result were established, i.e., identifying cat intention through vocalisation by analysing the signals emitted. The experimental results show the performance of the thresholded Lernmatrix among different pattern recognition models, where accurate vocalisation recognition rates are obtained. This computational model emerges as a suitable tool that could be helpful in animal care and ethology science to characterise the behaviour of animals through their vocalisation.

  • References

    1. Albatineh, A. N. (2010). Means and variances for a family of similarity indices used in cluster analysis. Journal of Statistical Planning and Inference, 140(10), 2828-2838.
    2. Aldape-Pérez, M., Román-Godínez, I., & Camacho-Nieto, O. (2008, September). Thresholded learning matrix for efficient pattern recalling. In Iberoamerican Congress on Pattern Recognition (pp. 445-452). Springer, Berlin, Heidelberg.
    3. Aldape-Pérez, M., Yáñez-Márquez, C., Camacho-Nieto, O., & Argüelles-Cruz, A. J. (2012). An associative memory approach to medical decision support systems. Computer methods and programs in biomedicine, 106(3), 287-307.
    4. Anderson, J. R., & Bower, G. H. (1972). Recognition and retrieval processes in free recall. Psychological Review, 79(2), 97.
    5. Barbé, K., Pintelon, R., & Schoukens, J. (2009). Welch method revisited: nonparametric power spectrum estimation via circular overlap. IEEE Transactions on signal processing, 58(2), 553-565.
    6. Bateson, P. P. G., & Turner, D. C. (Eds.). (2000). The domestic cat: the biology of its behaviour. Cambridge University Press.
    7. Berrar, D. (2018). Bayes' theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 403.
    8. Boucheham, B. (2010). Reduced data similarity-based matching for time series patterns alignment. Pattern Recognition Letters, 31(7), 629-638.
    9. Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Sánchez-Pérez, L. A., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2012, September). A modification of the lernmatrix for real valued data processing. In Iberoamerican Congress on Pattern Recognition (pp. 487-494). Springer, Berlin, Heidelberg.
    10. Cerón-Figueroa, S., López-Yáñez, I., Alhalabi, W., Camacho-Nieto, O., Villuendas-Rey, Y., Aldape-Pérez, M., & Yáñez-Márquez, C. (2017). Instance-based ontology matching for e-learning material using an associative pattern classifier. Computers in Human Behavior, 69, 218-225.
    11. Chandra, C., Moore, M. S., & Mitra, S. K. (1998, May). An efficient method for the removal of impulse noise from speech and audio signals. In 1998 IEEE International Symposium on Circuits and Systems (ISCAS) (Vol. 4, pp. 206-208). IEEE.
    12. Cosoi, A. C., Vlad, M. S., & Sgarciu, V. (2007). Using a neural network to determine a cat's emotional state by its meow. Annals of DAAAM & Proceedings, 171-173.
    13. Da Silva, A. A., Quintana, V. H., & Pang, G. K. H. (1992). A probabilistic associative memory and its application to signal processing in electrical power systems. Engineering Applications of Artificial Intelligence, 5(4), 309-318.
    14. Erdem, A., & Tari, S. (2010). A similarity-based approach for shape classification using Aslan skeletons. Pattern Recognition Letters, 31(13), 2024-2032.
    15. Fermo, J. L., Schnaider, M. A., Silva, A. H. P., & Molento, C. F. M. (2019). Only when it feels good: Specific cat vocalisations other than meowing. Animals, 9(11), 878.
    16. García-Serrano, J. R., & Martínez-Trinidad, J. F. (1999, September). Extension to c-means algorithm for the use of similarity functions. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 354-359). Springer, Berlin, Heidelberg.
    17. Hernández-Reyes, E., García-Hernández, R. A., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2006, August). Document clustering based on maximal frequent sequences. In International Conference on Natural Language Processing (in Finland) (pp. 257-267). Springer, Berlin, Heidelberg.
    18. Hernández-Rodríguez, S., Martínez-Trinidad, J. F., & Carrasco-Ochoa, J. A. (2010). Fast k most similar neighbor classifier for mixed data (tree k-MSN). Pattern recognition, 43(3), 873-886.
    19. Hubka, P., Konerding, W., & Kral, A. (2015). Auditory feedback modulates development of kitten vocalisations. Cell and tissue research, 361(1), 279-294.
    20. Hwang, S., & Cho, S. (2007, June). Clustering-based reference set reduction for k-nearest neighbor. In International Symposium on Neural Networks (pp. 880-888). Springer, Berlin, Heidelberg.
    21. Kataria, A., & Singh, M. D. (2013). A review of data classification using a k-nearest neighbour algorithm. International Journal of Emerging Technology and Advanced Engineering, 3(6), 354-360.
    22. Kim, S. W., & Oommen, B. J. (2006). Prototype reduction schemes applicable for non-stationary data sets. Pattern recognition, 39(2), 209-222.
    23. Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on Systems, man, and Cybernetics, 18(1), 49-60.
    24. Li, X., Girin, L., Gannot, S., & Horaud, R. (2016, March). Non-stationary noise power spectral density estimation based on regional statistics. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 181-185). IEEE.
    25. Martínez Trinidad, J. F., Garcia Serrano, J. R., & Ayaquica Martínez, I. O. (2002). C-means algorithm whit similarity functions. Computación y Sistemas, 5(4), 241-246.
    26. Miklósi, Á., Pongrácz, P., Lakatos, G., Topál, J., & Csányi, V. (2005). A comparative study of the use of visual communicative signals in interactions between dogs (Canis familiaris) and humans and cats (Felis catus) and humans. Journal of comparative psychology, 119(2), 179.
    27. Mitra, S., Kundu, P. P., & Pedrycz, W. (2012). Feature selection using structural similarity. Information Sciences, 198, 48-61.
    28. Moelk, M. (1944). Vocalising in the House-Cat; A Phonetic and Functional Study. The American Journal of Psychology, 57(2), 184-205. doi:10.2307/1416947
    29. Morales-Rodríguez, Ú. S., Castillo-Cabrera, G., & Molina-Lozano, H. (2019). Procesador dedicado para el tratamiento de datos en formato de punto flotante. Res. Comput. Sci., 148(10), 209-218.
    30. Nanni, L., & Lumini, A. (2011). Prototype reduction techniques: A comparison among different approaches. Expert Systems with Applications, 38(9), 11820-11828.
    31. Nicastro, N., & Owren, M. J. (2003). Classification of domestic cat (Felis catus) vocalisations by naive and experienced human listeners. Journal of Comparative Psychology, 117(1), 44.
    32. Ntalampiras, S., Kosmin, D., & Sanchez, J. (2021, July). Acoustic classification of individual cat vocalisations in evolving environments. In 2021 44th International Conference on Telecommunications and Signal Processing (TSP) (pp. 254-258). IEEE.
    33. Olvera-López, J. A., Carrasco-Ochoa, J. A., Martínez-Trinidad, J. F., & Kittler, J. (2010). A review of instance selection methods. Artificial Intelligence Review, 34(2), 133-143.
    34. Owens, J. L., Olsen, M., Fontaine, A., Kloth, C., Kershenbaum, A., & Waller, S. (2017). Visual classification of feral cat Felis silvestris catus vocalisations. Current Zoology, 63(3), 331-339.
    35. Palm, G. (2013). Neural associative memories and sparse coding. Neural Networks, 37, 165-171.
    36. Pandeya, Y., Kim, D., & Lee, J. (2018). Domestic Cat Sound Classification Using Learned Features from Deep Neural Nets. Applied Sciences, 8(10), 1949.
    37. Perron, O. (1907). Zur theorie der matrices. Mathematische Annalen, 64(2), 248-263.
    38. Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. In Machine learning (pp. 101-121). Academic Press.
    39. Prasadh, S. K., Natrajan, S. S., & Kalaivani, S. (2017, November). Efficiency analysis of noise reduction algorithms: Analysis of the best algorithm of noise reduction from a set of algorithms. In 2017 International Conference on Inventive Computing and Informatics (ICICI) (pp. 1137-1140). IEEE.
    40. Prato-Previde, E., Cannas, S., Palestrini, C., Ingraffia, S., Battini, M., Ludovico, L. A., ... & Mattiello, S. (2020). What's in a meow? A study on human classification and interpretation of domestic cat vocalisations. Animals, 10(12), 2390.
    41. Priyanka, & Kumar, D. (2020). Decision tree classifier: A detailed survey. International Journal of Information and Decision Sciences, 12(3), 246-269.
    42. Quaranta, A., d’Ingeo, S., Amoruso, R., & Siniscalchi, M. (2020). Emotion recognition in cats. Animals, 10(7), 1107.
    43. Ramírez-Rubio, R., Aldape-Pérez, M., Yáñez-Márquez, C., López-Yáñez, I., & Camacho-Nieto, O. (2017). Pattern classification using smallest normalised difference associative memory. Pattern Recognition Letters, 93, 104-112.
    44. Rico-Juan, J. R., & Iñesta, J. M. (2012). New rank methods for reducing the size of the training set using the nearest neighbor rule. Pattern Recognition Letters, 33(5), 654-660.
    45. Roman-Godinez, I., Lopez-Yanez, I., & Yanez-Marquez, C. (2006, November). A new classifier based on associative memories. In 2006 15th International Conference on Computing (pp. 55-59). IEEE.
    46. Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley & Sons.
    47. Rump, S. M. (1997). Theorems of Perron-Frobenius type for matrices without sign restrictions. Linear Algebra and Its Applications, 266, 1-42.
    48. Sánchez Garfias, F. A., Díaz de León, S., Luis, J., & Yáñez Márquez, C. (2004). Lernmatrix de Steinbuch: avances teóricos. Computación y Sistemas, 7(3), 175-189.
    49. Sánchez, J. S. (2004). High training set size reduction by space partitioning and prototype abstraction. Pattern Recognition, 37(7), 1561-1564.
    50. Sánchez, J. S. (2004). High training set size reduction by space partitioning and prototype abstraction. Pattern Recognition, 37(7), 1561-1564.
    51. Schötz, S. (2012). A phonetic pilot study of vocalisations in three cats. Proceedings of Fonetik 2012, 45-48.
    52. Schötz, S. (2014). A pilot study of human perception of emotions from domestic cat vocalisations. In Proceedings of Fonetik (Vol. 201, pp. 95-100).
    53. Schötz, S. (2015). Agonistic vocalisations in domestic cats: a case study. In Fonetik 2015 (pp. 85-90). Lund University.
    54. Schötz, S., & van de Weijer, J. (2014). A study of human perception of intonation in domestic cat meows. Proceedings of Speech Prosody 2014, 20-23.
    55. Schötz, S., van de Weijer, J., & Eklund, R. (2017). Phonetic Characteristics of Domestic Cat Vocalisations. In The 1st International Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots, VIHAR 2017, 25–26 August 2017, University of Skövde, Sweden (pp. 5-6).
    56. Steinbuch, K. (1961). Die lernmatrix. Biological Cybernetics, 1(1), 36-45.
    57. Tabatabaei, S.M., Chalechale, A. (2019). Local binary patterns for noise-tolerant sEMG classification. SIViP 13, 491–498. https://doi.org/10.1007/s11760-018-1374-x
    58. Tsang, I. R., & Tsang, I. J. (2006, September). Pattern recognition using neighborhood coding. In International Conference Image Analysis and Recognition (pp. 600-611). Springer, Berlin, Heidelberg.
    59. Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2), 70-73.
    60. Xu, Y., & Goodacre, R. (2018). On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. Journal of Analysis and Testing, 2(3), 249–262. doi:10.1007/s41664-018-0068-2
    61. Yeon, S. C., Kim, Y. K., Park, S. J., Lee, S. S., Lee, S. Y., Suh, E. H., ... & Lee, H. J. (2011). Differences between vocalisation evoked by social stimuli in feral cats and house cats. Behavioural processes, 87(2), 183-189.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 The Authors

How to cite

Morales-Rodríguez, Úrsula S., Carbajal-Hernández, J. J., Luna-Benoso, B., Rodríguez-Jordán, G. de J., & Martínez Perales, J. C. (2024). Recognition of domestic <em>Felis Catus</em> vocalisations using a computational associative model. Journal of Animal Behaviour and Biometeorology, 12(3), 2024020. https://doi.org/10.31893/jabb.2024020
  • Article viewed - 375
  • PDF downloaded - 262