• Abstract

    To meet the growing demand for poultry products, many producers have decided to increase the density of animals per square meter. This, coupled with global warming, creates a severe problem for the poultry industry, as it is common to observe birds moving away from the thermal comfort zone. Therefore, the objective of this study was to evaluate the effect of three lipid sources and three levels of inclusion in broiler diets on sensible heat loss. Three hundred twenty-four female broilers from the Ross 308 line were housed in cages in an open house and distributed into nine different treatments. The body surface temperature was observed with an infrared thermography camera. Heat loss was analyzed by radiation, and convection was calculated by equations at weeks three, four, and six of broiler life, considering the importance of measuring and analyzing the following variables: wind speed, bird weight, bird area, ambient temperature, and relative humidity, among others. The treatments had no significant effect on Qt; however, the inclusion of palm oil, chicken oil at 3%, and sacha inchi oil at 9% can be an alternative in broiler chicken feed since they tend to reduce Qt at day 42 of life.

  • References

    1. Baêta and Souza (2010) Ambiência em edificações rurais: conforto animal (2a). UFV, Viçosa.
    2. Cary (2014) Introducción a la programación en SAS® Studio 3.2. SAS Web.
    3. Cassuce D (2011) Determinação das faixas de conforto térmico para frangos de corte de diferentes idades criados no Brasil. Available on: http://arquivo.ufv.br/dea/ambiagro/gallery/publicações/tesedeborahds.pdf. Accessed on: March 03, 2017.
    4. CIMOS, ICLAS (2012) International guiding principles for biomedical research involving animals. Available on: https://grants.nih.gov/grants/olaw/guiding_principles_2012.pdf. Accessed on: April 11, 2017.
    5. Cooper J (1971) Colored Feed for Turkey Poults. Poultry Science. https://doi.org/10.3382/ps.0501892
    6. Cooper M, Washburn K (1998) The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress. Poultry Science. https://doi.org/10.1093/ps/77.2.237
    7. Curto F, Naas I, Pereira D, Salgado D (2007) Estimativa do padrão de preferência térmica de matrizes pesadas (frango de corte). Revista Brasileira de Engenharia Agrícola e Ambiental. https://doi.org/10.1590/S1415-43662007000200012
    8. De Basilio V, Renquena F, León A, Vilariño M, Picard M (2003) Early age thermal conditioning immediately reduces body temperature of broiler chicks in a tropical environment. Poultry Science. https://doi.org/10.1093/ps/82.8.1235
    9. De Basilio V (2006) Estress calórico en aves. Available on: http://www.avpa.ula.ve/docuPDFs/conferencias/stress-calorico.pdf. Accessed on: March 07, 2017.
    10. Estrada M, Márquez S, Restrepo L (2007) Efecto de la temperatura y la humedad relativa en los parámetros productivos y la transferencia de calor en pollos de engorde. Revista Colombiana de Ciencias Pecuarias 20:288–303.
    11. Fanjul M, Fernandez F, Fuentes B, Gonzaléz H, Hiriart M, Masseiu L, Moreno E, Perez J, Salceda R (1998) El aceite de atún como alternativa para enriquecer la carne de pollo con ácidos grasos omega-3. Available on: https://anatomiayplastinacion.wikispaces.com/file/view/El+aceite+de+atun.pdf. Accessed on: March 12, 2017.
    12. Ferreira V, Francisco N, Belloni M, Aguirre G, Caldara F, Nääs I, Garcia R, Almeida I, Polycarpo G (2011) Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy densities. Revista Brasileira de Ciência Avícola. https://doi.org/10.1590/S1516-635X2011000200005
    13. Fiala D, Lomas K, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: tha passive system. Journal of Applied Physiology 87:1957–1972.
    14. Furtado D, Azevedo P, Tinôco I (2003). Análise do conforto térmico em galpões avícolas com diferentes sistemas de acondicionamento. Revista Brasileira de Engenharia Agrícola e Ambiental. https://doi.org/10.1590/S1415-43662003000300025
    15. Ghazalah A, Elsamee M, Ali, A (2008) Influence of Dietary Energy and Poultry Fat on the Response of Broiler Chicks to Heat Therm. International Journal of Poultry Science. https://doi.org/10.3923/ijps.2008.355.359
    16. Holman J (2010) Heat Transfer. 10thed pp. 713-714.
    17. ICA (2021) Censo Pecuario año 2021. Available on: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018
    18. Kennedy J (2017) Control del estres calorico en pollo de engorde. Available on: http://www.pronavicola.com/contenido/caloricopo. Accessed on: March 03, 2017.
    19. Lisboa C, Luis J (2012) Impacto del estrés calórico en la producción de pollos de engorde de Venezuela. REDVET 13:1–15.
    20. Malheiros R, Moraes V, Bruno L, Malheiros E, Furlan R, Macari M (2000) Environmental temperature and cloacal and surface temperatures of broiler chicks in first week post-hatch. Journal of Applied Poultry Research. https://doi.org/10.1093/japr/9.1.111
    21. Monteith J, Unsworth M (2013) Principles of Environmental Physics. Chemical Geology. https://doi.org/10.1016/0009-2541(75)90087-X
    22. Moraes D (2013) Alternativas nutricionais para frangos de corte submetidos ao estresse por calor. Available on: http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/BUOS-9FCJ5M/tese_diogo_de_moraes_cardoso_11_12_2013.pdf?sequence=1. Accessed on: March 08, 2017.
    23. Mount L (1979) Adaptation to thermal environment. Man and his productive animals. Available on: https://www.cabdirect.org/cabdirect/abstract/19791491643. Accessed on: March 28, 2021.
    24. Nääs I, Bites C, Pereira D, Nascimento G, Vercellino R (2010) Broiler surface temperature distribution of 42 day old chickens. Scientia Agricola. https://doi.org/10.1590/S0103-90162010000500001
    25. Nascimento G, Nääs I, Baracho M, Pereira D, Neves D (2014) Termografia infravermelho na estimativa de conforto térmico de frangos de corte. Revista Brasileira de Engenharia Agrícola e Ambiental. https://doi.org/10.1590/S1415-43662014000600014
    26. Nascimento S (2015) Modelagem do equilíbrio térmico de frangos de corte: um estudo da geração e transferência de calor. Available on: https://repositorio.unesp.br/handle/11449/123884. Accessed on: March 09, 2020.
    27. Nascimento S, Silva I (2010) As perdas de calor das aves: entendendo as trocas de calor com o meio. Available on: http://www.avisite.com.br/cet/img/20100916_trocasdecalor.pdf. Accessed on: April 02, 2017.
    28. NRC (1994) Nutrient Requirements of Poultry. National Academy of Sciences. https://doi.org/10.17226/2114
    29. Quishpe G (2006) Factores que afectan el consumo de alimento en pollos de engorde y postura. Available on: https://bdigital.zamorano.edu/bitstream/11036/930/1/T2297.pdf. Accessed on: March 03, 2017.
    30. Rabello C (2008) Produção de Aves em Clima Quente. Available on: http://docplayer.com.br/23201209-Producao-de-aves-em-clima-quente.html. Accessed on: March 03, 2017.
    31. Yahav S, Straschnow A, Luger D, Shinder D, Tanny J, Cohen S (2004) Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poultry Science. https://doi.org/10.1093/ps/83.2.253

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Journal of Animal Behaviour and Biometeorology

How to cite

Álvarez, E. A. O., Mejia, A. M. G., Sepúlveda, C. A. G., & Osorio Saraz, J. A. (2022). Total heat loss in broilers fed with different lipid sources. Journal of Animal Behaviour and Biometeorology, 10(3), 2229. https://doi.org/10.31893/jabb.22029
  • Article viewed - 99
  • PDF downloaded - 49