• Abstract

    The objective of this study was to evaluate the level of concentrate supplementation on the production and chemical composition of milk from 12 crossbred F1 dual-purpose cows (½ Bos taurus – ½ Bos indicus) and estimate the emission of CH4, N2O, and CO2 gases. The study included 12 crossbred F1 dual-purpose cows over 60 days of lactation. The cows grazed on 28% tropical native grassland and 72% Brachiaria spp. and Cynodon neumfluensis, supplemented with 0, 150, 300, and 450g of concentrate per kg daily milk production, during three experimental periods of 15 days each in a crossover design. Pasture and concentrate samples were collected and were analyzed for dry matter, crude protein, neutral detergent fiber, and acid detergent fiber. Milk production (kg d-1) was recorded daily, nitrous oxide (N2O), and emissions from excreta and daily CHproduction were calculated. Results were analyzed with the SAS MIXED procedure. Concentrate supplementation in tropical crossbred dairy cows did not improve milk yield but increased CHand N2O production (P < 0.0001) per cow as the concentrate increased in the diet; the Ym factor from the tropical region yielded less CHthan the IPCC Ym model (P < 0.0001). In conclusion, the calculation of CH4 using specific emission factors for the tropical climate region is better than the IPCC default emission factors in order not to overestimate the CH4 emissions.

  • References

    1. AOAC (Association of Official Analytic Chemist) (1990) Official Methods of Analysis, 15th edn. Association of Official Analytic Chemist, Washington, DC, USA, pp 1094.
    2. Boadi D, Benchaar C, Chiquette J, Massé D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science 84:319-335
    3. Castillo AR, Kebreab E, Beever DE, France J (2001) A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. Journal of Animal and Feed Science 9:1–32
    4. Castillo GE, Valles, MB, Mannetje L ‘t, Aluja SA (2005) Efecto de introducir Arachis pintoi sobre variables del suelo de pasturas de grama nativa del trópico húmedo de mexicano. Técnica Pecuaria en México 43:287-295
    5. Cochran WG, Cox GM (1992) Notes on the statistical analysis of the results, In Experimental designs, 2nd edn. John Wiley and Sons, Inc., New York, N.Y. pp 42–92.
    6. CVS (2016) Cross-breeding in Cattle for Milk Production: Achievements, Challenges and Opportunities in India-A Review. Advance in Dairy Research 4:3. doi:10.4172/2329-888x.1000158
    7. Dale AJ, McGettrick S, Gordon AW, Ferris CP (2015) The effect of two contrasting concentrate allocation strategies on the performance of grazing dairy cows. Grass and Forage Science 71:379-388. http:// dx.doi.org/10.1111/gfs.12185
    8. FAO (2019) Gateway to dairy production and products. Food and Agriculture Organization of the United Nations, Rome, Italy. Available online at: http://www.fao.org/dairy-production-products/en/
    9. Foresight (2011) The Future of Food and Farming Final Project Report. The Government Office for Science, London. Available online at: www.gov.uk/government/uploads/system/uploads/ attachment_data/file/288329/11-546-future-of-food-and-farmingreport.pdf. Accessed on: May 09, 2019.
    10. García SC, Pedernera M, Fulkerson WJ, Horadagoda A, Nandra K (2007) Feeding concentrates based on individual cow requirements improves the yield of milk solids in dairy cows grazing restricted pasture. Australian Journal of Experimental Agriculture 47:502–508.
    11. Garg MR, Sherasia LP, Phondba BT, Makkar HPS (2016) Greenhouse gas emission intensity based on lifetime milk production of dairy animals, as affected by ration-balancing program. Animal Production Science 58:1027. http://dx.doi.org/10.1071/AN15586
    12. Hatungumukama G, Sidikou DI, Leroy PL, Detilleux J (2009) Effects of non-genetic and crossbreeding factors on dairy milk yield of Jersey x Sahiwal x Ankolécows in Burundi. Journal of Animal and Veterinary Advances 8:794–798.
    13. Hills JL, Wales WJ, Dunshea FR, Garcia SC, Roche JR (2015) Invited review: An evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. Journal of Dairy Science 98:1363–1401.
    14. IDF (2015) A common carbon footprint approach for the dairy sector: The IDF Guide to Standard Life Cycle Assessment Methodology. In Bulletin of the International Dairy Federation 479/2015. Brus- sels, Belgium.
    15. IPCC (2006) Guidelines for National Greenhouse Gas Inventories. Greenhouse Gas Inventories Programme, IGES, Japan.
    16. IPCC (2007) Technical summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 19–91.
    17. IPCC (2013) Climate Change 2013: The Physical Science Basis. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, edn. Cam- bridge University Press, Cambridge, United Kingdom.
    18. Jones DB (1931) Factors for converting percentages of nitrogen in foods and feeds into percentages of protein. USDA Circ. 183:1-21
    19. de Klein C, Eckard R, van der Weerden T (2010) Nitrous oxide emissions from the nitrogen cycle in livestock agriculture: estimation and mitigation. In Smith KA, editor. Nitrous oxide and climate change. Londe: Earthscan 107-142
    20. Ku-Vera JC, Valencia-Salazar SS, Piñeiro-Vázquez AT, Molina-Botero IC, Arroyave-Jaramillo J, Montoya-Flores MD, Lazos-Balbuena FJ, Canul-Solís JR, Arceo-Castillo JI, Ramírez-Cancino L, Escobar-Restrepo CS, Alayón-Gamboa JA, Jiménez-Ferrer G, Zavala-Escalante LM, Castelán-Ortega OA, Quintana-Owen P, Ayala-Burgos AJ, Aguilar-Pérez CF, Solorio-Sánchez FJ (2018) Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agricultural and Forest Meteorology 258:3–7. doi:10.1016/j.agrformet.2018.01.008
    21. Lawrence DC, O'Donovan M, Boland TM, Lewis E, Kennedy E (2015) The effect of concentrate feeding amount and feeding strategy on milk production, dry matter intake, and energy partitioning of autumn-calving Holstein-Friesian cows. Journal of Dairy Science 98:388–348.
    22. Ledgard SF, Falconer SJ, Abercrombie R, Philip G, Hill JP (2020) Temporal, spatial, and management variability in the carbon footprint of New Zealand milk. Journal of Dairy Science 103:1031-1046. doi:10.3168/jds.2019-17182
    23. Lovett DK, Stack LJ, Lovell S, Callan J, Flynn B, Hawkins M, O’Mara FP (2005) Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. Journal of Dairy Science 88:2836–2842. doi.org/10.3168/jds.S0022-0302(05)72964-7
    24. Makkar HPS (2013) Towards sustainable animal diets. Optimization of feed use efficiency in ruminant production systems. In ‘Proceedings of the FAO symposium, 27 November 2012, Bangkok, Thailand. FAO animal production and health proceedings, no. 16’. (Eds HPS Makkar, D Beever). (FAO and Asian–Australasian Association of Animal Production Societies: Rome) 16:67–74.
    25. Makkar HPS, Ankers P (2014) A need for generating sound quantitative data at national levels for feed-efficient animal production. Animal Production Science 54:1569–1574.
    26. Montoya-Flores MD, Molina-Botero IC, Arango J, Romano-Muñoz JL, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC (2020) Effect of Dried Leaves of Leucaena leucocephala on Rumen Fermentation, Rumen Microbial Population, and Enteric Methane Production in Crossbred Heifers. Animal 10:300. doi.org/10.3390/ani10020300
    27. Muñoz C, Hube S, Morales JM, Yan T, Ungerfeld EM (2015) Effects of concentrate supplementation on enteric methane emissions and milk production of grazing dairy cows. Livestock Science 175:37–46. doi:10.1016/j.livsci.2015.02.001
    28. Niu M, Kebreab E, Hristov AN, Oh J, Arndt C, Bannink A (2018) Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology 248:3368–3389. doi:10.1111/gcb.14094
    29. Norse D (2012) Low carbon agriculture: Objectives and policy pathways. Environ Dev. 1:25–39. doi:10.1016/j.envdev.2011.12.004
    30. NRC (2001) Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, Washington, DC: The National Academies Press, pp 3-27.
    31. Olijhoek DW, Løvendahl P, Lassen J, Hellwing ALF, Höglund JK, Weisbjerg MR, Noel SJ, McLean F,Højberg O, Lund P (2018) Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. Journal of Dairy Science 9926-9940. doi:10.3168/jds.2017-14278
    32. Olmos Colmenero JJ, Broderick GA (2006) Effect of dietary crude protein concentration on ruminal nitrogen metabolism in lactating dairy cows. Journal of Dairy Science 89:1694–1703.
    33. O’Neill BF, Deighton MH, O’Loughlin BM, Galvin N, O’Donovan M, Lewis E (2012) The effects of supplementing grazing dairy cows with partial mixed ration on enteric methane emissions and milk production during mid to late lactation. Journal of Dairy Science 95: 6582–6590.
    34. Pacheco D, Waghorn GC (2008) Dietary nitrogen-definitions, digestion, excretion and consequences of excess for grazing ruminants. Proceedings of the New Zealand Grassland Association 70:107–116.
    35. Ramin M, Huhtanen P (2013) Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science 96:2476–2493. doi:10.3168/jds.2012-6095
    36. Sanh MV, Wittorsson H, Ly LV (2002) Effects of natural grass forage to concentrate rations and feeding principles on milk production and performance of crossbred lactacting cows. Asian-Australasian Journal of Animal Science 15:650-657.
    37. Santos SA, Valadares Filho SC, Detmann E, Valadares RFD, Ruas JRM, Amaral PM (2011) Different forage sources for F1 Holstein×Gir dairy cows. Livestock Science 142:48–58. doi:10.1016/j.livsci.2011.06.017
    38. Sauvant D, Giger-Reverdin S (2009) Modélisation des interactions digestives et de la production de méthane chez les ruminants. INRA Productions Animales 22:375-384
    39. SAS (1990) SAS/STAT User's guide. [Computer program] 4th edn. Version 6. Cary NC, USA: SAS Institute Inc.
    40. SAGARPA (2016). Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Escenario base 09-18. Proyecciones para el sector agropecuario de México. Available online at: http://www.sagarpa.gob.mx/agronegocios/Documents/Escenariobase09.pdf Accessed on: June 09, 2018.
    41. Selbie DR, Buckthought LE, Shepherd MA (2015) The Challenge of the Urine Patch for Managing Nitrogen in Grazed Pasture Systems. Advances in Agronomy 229–292. doi:10.1016/bs.agron.2014.09.004
    42. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment 118:6–28.
    43. Yan TCS, Mayne FG, Gordon MG, Porter RE, Agnew DC, Patterson CP, Ferris DJ (2010) Kilpatrick Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. Journal of Dairy Science 93:2630-2638.
    44. Valencia Salazar SS, Piñeiro Vázquez AT, Molina Botero IC, Lazos Balbuena FJ, Uuh Narváez JJ, Segura Campos MR, Ramírez Avilés L, Solorio Sánchez FJ, Ku Vera JC (2018) Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agricultural and Forest Meteorology 258:108–116. doi:10.1016/j.agrformet.2017.12.262
    45. Van Lingen HJ, Niu M, Kebreab E, Valadares Filho SC, Rooke JA, Duthie CA, et al. (2019) Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agriculture, Ecosystems & Environment 283:106575. doi:10.1016/j.agee.2019.106575
    46. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods of dietary, neutral detergent fiber and non starch polysaccha¬rides in relation to animal nutrition. Journal of Dairy Science 74:3583- 3597.
    47. van der Weerden TJ, Styles TM, Rutherford AJ, de Klein CAM, Dynes R (2017) Ni- trous oxide emissions from cattle urine deposited onto soil supporting a winter for- age kale crop. New Zealand Journal of Agricultural Research 60:119–130.
    48. Wallis De Vries MF (1995) Estimating Forage Intake and Quality in Grazing Cattle: A Reconsideration of the Hand-Plucking Method. Journal of Range Management 48:370-375.
    49. Whelan SJ, Carey W, Boland TM, Lynch MB, Kelly AK, Rajauria G, Pierce KM (2017) The effect of by-product inclusion level on milk production, nutrient digestibility and excretion, and rumen fermentation parameters in lactating dairy cows offered a pasture-based diet. Journal of Dairy Science 100:055–1062. doi:10.3168/jds.2016-11600

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Journal of Animal Behaviour and Biometeorology

How to cite

Jiménez, L. E. R., Arni, X. H., Benaouda, M., Avalos, J. O., Corona, L., Castillo-Gallegos, E., Ortega, O. A. C., & Gonzalez-Ronquillo, M. (2021). Concentrate supplementation on milk yield, methane and CO2 production in crossbred dairy cows grazing in tropical climate regions. Journal of Animal Behaviour and Biometeorology, 9(2), 2118. https://doi.org/10.31893/jabb.21018
  • Article viewed - 104
  • PDF downloaded - 48