• Abstract

    One of the most important virulence factors in Pseudomonas aeruginosa is biofilm formation, as it works as a barrier for entering antibiotics into the bacterial cell. Different environmental and nutritional conditions were used to optimize biofilm formation using microtitre plate assay by P. aeruginosa. The low nutrient level of the medium represented by tryptic soy broth (TSB) was better in biofilm formation than the high nutrient level of the medium with Luria Broth (LB). The optimized condition for biofilm production at room temperature (25 °C) is better than at host temperature (37 °C). Moreover, the staining with 0.1% crystal violet and reading the biofilm with wavelength 360 are considered essential factors in increasing the productivity of biofilm formation in P. aeruginosa. Finally, we highly recommended using these optimized microtitre plate assays to assess biofilm formation in P. aeruginosa.

  • References

    1. Agarwal R, Singh S, Bhilegaonkar K, Singh V (2011) Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes. International Food Research Journal 18:1493.
    2. Al-Dahmoshi H, Al-Obaidi RD, Al-Khafaji N (2020) Pseudomonas aeruginosa: Diseases, Biofilm and Antibiotic Resistance. In Pseudomonas aeruginosa-Biofilm Formation, Infections and Treatments, IntechOpen.
    3. Aybey A, Demirkan E (2016) Inhibition of Pseudomonas aeruginosa biofilm formation and motilities by human serum paraoxonase (hPON1). AIMS Microbiology 2:388-401.
    4. Casciaro B, Lin Q, Afonin S, Loffredo MR, de Turris V, Middel V, Ulrich AS, Di YP, Mangoni ML (2019) Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin‐1a (1‐21) NH2. The FEBS journal 286:3874-3891.
    5. Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Frontiers in microbiology 10:913.
    6. Gerstel U, Römling U (2001) Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environmental microbiology 3:638-648.
    7. Ghaima K, Rasheed S, Ahmed E (2013) Antibiofilm, antibacterial and antioxidant activities of water extract of Calendula officinalis flowers. IJBPR 4:465-470.
    8. Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A (2020) Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC research notes 13:1-6.
    9. Kannan A, Gautam P (2015) A quantitative study on the formation of Pseudomonas aeruginosa biofilm. SpringerPlus 4:1-3.
    10. Khadim M, Marjani M (2019) Pyocyanin and biofilm formation in Pseudomonas aeruginosa isolated from burn infections in Baghdad, Iraq. Biological 12:131.
    11. Lima JLC, Alves LR, Jacomé PRLdA, Bezerra JP, Maciel MAV, Morais MMCd (2018) Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Brazilian Journal of Infectious Diseases 22:129-136.
    12. Mahmmudi Z, Gorzin A, Branch K (2017) Biofilm of Pseudomonas aeruginosa in Nosocomial Infection. Journal of Molecular Biology Research 7:29-33.
    13. Maurice NM, Bedi B, Sadikot RT (2018) Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. American journal of respiratory cell and molecular biology 58:428-439.
    14. Michaud G, Visini R, Bergmann M, Salerno G, Bosco R, Gillon E, Richichi B, Nativi C, Imberty A, Stocker A (2016) Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chemical science 7:166-182.
    15. Mulcahy LR, Isabella VM, Lewis K (2014) Pseudomonas aeruginosa biofilms in disease. Microbial ecology 68:1-12.
    16. Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F (2020) Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Frontiers in microbiology 10:2894.
    17. Prakash B, Krishnappa G (2002) Antigenic analysis of outer membrane proteins of biofilm and planktonic cells of Salmonella gallinarum. Indian Veterinary Journal 79:1001-1004.
    18. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International 2015.
    19. Redfern J, Wallace J, van Belkum A, Jaillard M, Whittard E, Ragupathy R, Verran J, Kelly P, Enright M (2019) Biofilm Associated Genotypes of Multidrug-Resistant Pseudomonas aeruginosa. bioRxiv: 713453.
    20. Soler-Arango J, Figoli C, Muraca G, Bosch A, Brelles-Mariño G (2019) The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication. PLoS One 14:e0216817.
    21. Sommer R, Rox K, Wagner S, Hauck D, Henrikus SS, Newsad S, Arnold T, Ryckmans T, Brönstrup M, Imberty A (2019) Anti-biofilm agents against Pseudomonas aeruginosa: a structure–activity relationship study of C-glycosidic LecB inhibitors. Journal of medicinal chemistry 62:9201-9216.
    22. Stepanović S, Ćirković I, Mijač V, Švabić-Vlahović M (2003) Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiology 20:339-343.
    23. Stepanović S, Ćirković I, Ranin L, S✓ vabić‐Vlahović M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in applied microbiology 38:428-432.
    24. Taylor PK, Yeung AT, Hancock RE (2014) Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. Journal of biotechnology 191:121-130.
    25. Turpin C (2015) The effect of antibiotics on Pseudomonas aeruginosa biofilm production (Doctoral dissertation, Eastern Kentucky University).
    26. Vallet I, Diggle SP, Stacey RE, Cámara M, Ventre I, Lory S, Lazdunski A, Williams P, Filloux A (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. Journal of bacteriology 186: 2880-2890.
    27. Whiteley M, Bangera M, Bumgarner R, Parsek M, Teitzel G, Lory S, Greenberg E (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860-864.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Journal of Animal Behaviour and Biometeorology

How to cite

Al-Khazraji, S. F. R., & Al-Maeni, M. A. R. (2021). Optimization of some environmental and nutritional conditions using microtiter plate for <em>Pseudomonas aeruginosa</em> biofilm formation. Journal of Animal Behaviour and Biometeorology, 9(4), 2136. https://doi.org/10.31893/jabb.21036
  • Article viewed - 160
  • PDF downloaded - 76